Takagi—Sugeno Observers as an Alternative to Nonlinear Observers for Analytical Redundancy. Application to a Steam Generator of a Thermal Power Plant
- 5 Downloads
Abstract
Two observer design approaches for analytical redundancy are presented in this work. The first one is based on the use of Takagi—Sugeno observers, whereas the second method is based on nonlinear high-gain observers. The objective is to conduct a comparative study between these two different approaches for a posteriori application of monitoring process and/or fault detection. In order to ensure a fair comparison, both approaches are evaluated on a common case study: the estimation of critical variables in a steam generator for thermal power plants. A well-known simplified nonlinear model for the steam generator proposed by Bell and Åstrom is used for the high-gain observer design whereas for the Takagi—Sugeno obsever design, the nonlinear model is transformed into a Takagi—Sugeno form by means of the nonlinear sector approach. The main contribution is to propose the use of Takagi—Sugeno observers for analytical redundancy purposes and to highlight their advantages over the use nonlinear high-gain observers.
Keywords
Analytical redundancy High-gain observer Takagi—Sugeno observer Steam generatorNotes
Acknowledgements
The authors acknowledge CONACYT for supporting Jesús Reyes-Martínez through a Ph.D. Scholarship.
References
- 1.Ali, J.M., Hoang, N.H., Hussain, M.A., Dochain, D.: Review and classification of recent observers applied in chemical process systems. Comput. Chem. Eng. 76, 27–41 (2015)CrossRefGoogle Scholar
- 2.Astorga, C.M., Othman, N., Othman, S., Hammouri, H., McKenna, T.F.: Nonlinear continuous-discrete observers: application to emulsion polymerization reactors. Control Eng. Pract. 10(1), 3–13 (2002)CrossRefGoogle Scholar
- 3.Åström, K.J., Eklund, K.: A simplified non-linear model of a drum boiler-turbine unit. Int. J. Control 16(1), 145–169 (1972)CrossRefGoogle Scholar
- 4.Bell, R.D., Åström, K.J.: Dynamic models for boiler-turbine-alternator units: data logs and parameter estimation for a 160 MW unit. Tech. rep., Department of Automatic Control. Lund Institute of Technology (1987)Google Scholar
- 5.Brahim, I.H., Chaabane, M., Mehdi, D.: Fault-tolerant control for T-S fuzzy descriptor systems with sensor faults: an LMI approach. Int. J. Fuzzy Syst. 19(2), 516–527 (2017)MathSciNetCrossRefGoogle Scholar
- 6.Brahim, I.H., Mehdi, D., Mohamed, C.: Robust fault detection for uncertain T-S system with unmeasurable premise variables: descriptor approach. Int. J. Fuzzy Syst. (2017). https://doi.org/10.1007/s40815-017-0344-8 Google Scholar
- 7.Chadli, M., Guerra, T.M.: LMI solution for robust static output feedback control of discrete Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 20(6), 1160–1165 (2012)CrossRefGoogle Scholar
- 8.Cheres, E.: Small and medium size drum boiler models suitable for long term dynamic response. IEEE Trans. Energy Convers. 5(4), 686–692 (1990)CrossRefGoogle Scholar
- 9.Chilali, M., Gahinet, P., Apkarian, P.: Robust pole placement in LMI regions. IEEE Trans. Automat. Control 44(12), 2257–2270 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 10.Doyle, J., Stein, G.: Robustness with observers. IEEE Trans. Automat. Control 24(4), 607–611 (1979)MathSciNetCrossRefMATHGoogle Scholar
- 11.Dukelow, S.G.: The Control of Boilers, 2nd edn. Instrument Society of America, Pittsburgh, PA (1991)Google Scholar
- 12.Elleuch, I., Khedher, A., Othman, K.B.: State and faults estimation based on proportional integral sliding mode observer for uncertain Takagi-Sugeno fuzzy systems and its application to a turbo-reactor. Int. J. Fuzzy Syst. (2017). https://doi.org/10.1007/s40815-017-0365-3 MathSciNetGoogle Scholar
- 13.Escobar, R.F., Astorga-Zaragoza, C.M., Hernández, J.A., Juárez-Romero, D., García-Beltrán, C.D.: Sensor fault compensation via software sensors: application in a heat pump’s helical evaporator. Chem. Eng. Res. Des. 93, 173–482 (2015)CrossRefGoogle Scholar
- 14.Esfandiari, F., Khalil, H.K.: Output feedback stabilization of fully linearizable systems. Int. J. Control 56(5), 1007–1037 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 15.Gao, Z., Ding, S.X.: Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica 43(5), 912–920 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 16.Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems application to bioreactors. IEEE Trans. Automat. Control 37(6), 875–880 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 17.González, T., Márquez, R., Bernal, M., Guerra, T.M.: Nonquadratic controller and observer design for continuous TS models: a discrete-inspired solution. Int. J. Fuzzy Syst. 18(1), 1–14 (2016)MathSciNetCrossRefGoogle Scholar
- 18.Habbi, H., Zelmat, M., Bouamama, B.O.: A dynamic fuzzy model for a drum-boiler-turbine system. Automatica 39, 1213–1219 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 19.Ichalal, D., Marx, B., Mammar, S., Maquin, D., Ragot, J.: How to cope with unmeasurable premise variables in Takagi-Sugeno observer design: dynamic extension approach. Eng. Appl. Artif. Intell. 67, 430–435 (2018)CrossRefGoogle Scholar
- 20.Khalil, H.K.: High-Gain Observers in Nonlinear Feedback Control, 1st edn. SIAM, Philadelphia, PA (2017)CrossRefMATHGoogle Scholar
- 21.Kong, X., Liu, X., Lee, K.Y.: Nonlinear multivariable hierarchical model predictive control for boiler-turbine system. Energy 98, 309–322 (2015)CrossRefGoogle Scholar
- 22.Lendek, Z., Guerra, T.M., Babuška, R., de Schutter, B.: Stability Analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
- 23.Li, F., Shi, P., Lim, C.C., Wu, L.: Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Syst. (2016). https://doi.org/10.1109/TFUZZ.2016.2641022 Google Scholar
- 24.Li, F., Shi, P., Wu, L., Zhang, X.: Fuzzy-model-based D-stability and nonfragile control for discrete-time descriptor systems with multiple delays. IEEE Trans. Fuzzy Syst. 22(4), 1019–1025 (2014)CrossRefGoogle Scholar
- 25.de Mello, F.P.: Boiler models for system dynamic performance studies. IEEE Trans. Power Syst. 6(1), 66–74 (1991)CrossRefGoogle Scholar
- 26.Ohtake, H., Takana, K., Wang, H.O.: Fuzzy modeling via sector nonlinearity concept. Integr. Comput. Aided Eng. 10(4), 333–341 (2003)Google Scholar
- 27.Pellegrinetti, G., Bentsman, J.: Nonlinear control oriented boiler modeling-a benchmark problem for controller design. IEEE Trans. Control Syst. Technol. 4(1), 57–64 (1996)CrossRefGoogle Scholar
- 28.Téllez-Anguiano, A.C., Astorga-Zaragoza, C.M., Escobar, R.F., Alcorta-García, E., Juárez-Romero, D.: Continuous-discrete observer-based fault detection and isolation system for distillation columns using a binary mixture. Revista Mexicana de Ingeniería Química 15(1), 275–290 (2016)Google Scholar
- 29.Téllez-Anguiano, A.C., Astorga-Zaragoza, C.M., Targui, B., Aguilera-González, A., Reyes-Reyes, J., Adam-Medina, M.: Experimental validation of a high-gain observer for composition estimation in an ethanol-water distillation column. Asia-Pacific J. Chem. Eng. 4(6), 942–952 (2009)CrossRefGoogle Scholar
- 30.Tsai, S.H.: Delay-dependent robust stabilisation for a class of fuzzy bilinear systems with time-varying delays in state and control input. Int. J. Syst. Sci. 45(3), 187–201 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 31.Zhang, J., Peng, C.: \({H}_\infty\) filtering for networked Takagi-Sugeno fuzzy systems with asynchronous constraints. IET Signal Process 9(5), 403–411 (2015)CrossRefGoogle Scholar
- 32.Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)CrossRefGoogle Scholar