Advertisement

Uncertainty Management by Feature Space Tuning for Single-Trial P300 Detection

  • Reshma KarEmail author
  • Pratyusha Rakshit
  • Amit Konar
  • Aruna Chakraborty
Article
  • 28 Downloads

Abstract

The P300 is a widely studied event-related potential, which allows non-muscular communication. In P300 induced brain–computer interfacing, one often comes across the challenge of modeling uncertainties due to fluctuations in EEG feature values within a specific session and across several sessions of EEG recordings of a specific subject. The relevance of fuzzy systems in this domain thus cannot be undermined. In this paper, the authors propose (a) an interval type-2 fuzzy classifier for detecting P300 occurrences and (b) a feature tuning algorithm for selection of Autoregressive Yule Parameter features of optimal lag-length corresponding to individual electrodes with an aim to maximize a classifier-oriented performance metric. The classifier performance metric is formulated as a simple objective function tailored to the classifier performance in terms of low uncertainty and high classification accuracy. The relationship between the proposed objective function value and classification accuracy is found to be statistically significant over iterations. The experimental results show that the proposed algorithm achieves an average accuracy of 90.8%.

Keywords

P300 Autoregressive Yule Parameter Electroencephalogram Single-trial analysis Type-2 fuzzy sets Uncertainty Feature space tuning 

Notes

Acknowledgements

The work reported in this article is financially supported by 'Cognitive Science Program' funded by University Grant Commission (UGC), India.

References

  1. 1.
    Abootalebi, V., Moradi, M.H., Khalilzadeh, M.A.: A new approach for EEG feature extraction in P300-based lie detection. Comput. Methods Progr. Biomed. 94(1), 48–57 (2009)CrossRefGoogle Scholar
  2. 2.
    Berenji, H.R.: A reinforcement learning-based architecture for fuzzy logic control. Int. J. Approx. Reason. 6(2), 267–292 (1992)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bhattacharjee, T., Kar, R., Konar, A., Lekova, A., Nagar, A.K.: A general type-2 fuzzy set induced single trial P300 detection. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2017)Google Scholar
  4. 4.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)CrossRefGoogle Scholar
  5. 5.
    Cecotti, H., Graser, A.: Convolutional neural networks for P300 detection with application to brain–computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011)CrossRefGoogle Scholar
  6. 6.
    Chumerin, N., Manyakov, N.V., Combaz, A., Suykens, J.A.K., Yazicioglu, R.F., Torfs, T., Merken, P., Neves, H.P., Van Hoof, C., Van Hulle, M.M.: P300 detection based on Feature Extraction in on-line Brain–Computer Interface. In: Annual Conference on Artificial Intelligence, pp. 339–346 (2009)Google Scholar
  7. 7.
    Corsi-Cabrera, M., Galindo-Vilchis, L., del-Río-Portilla, Y., Arce, C., Ramos-Loyo, J.: Within-subject reliability and inter-session stability of EEG power and coherent activity in women evaluated monthly over nine months. Clin. Neurophysiol. 118(1), 9–21 (2007)CrossRefGoogle Scholar
  8. 8.
    Das, S., Suganthan, P.N., Nagaratnam, P.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evolut. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  9. 9.
    Dmitriev, A., Al-harosh, M., Igor, S., Nikolaev, A.: The optimal stimulation mode and the number of averaging epochs selection for P300 detection. In: 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), pp. 91–94 (2018)Google Scholar
  10. 10.
    Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy Interval Analysis, Fundamentals of Fuzzy Sets, pp. 483–581. Springer, Berlin (2000)zbMATHGoogle Scholar
  11. 11.
    Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1998)CrossRefGoogle Scholar
  12. 12.
    Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabilit. Eng. 11(2), 141–144 (2003)CrossRefGoogle Scholar
  13. 13.
    Haghighatpanah, N., Amirfattahi, R., Abootalebi, V., Nazari, B.: A two stage single trial P300 detection algorithm based on independent component analysis and wavelet transforms. In: 19th Iranian Conference of Biomedical Engineering (ICBME), pp. 324–329. IEEE (2012)Google Scholar
  14. 14.
    Haghighatpanah, N., Amirfattahi, R., Abootalebi, V., Nazari, B.: A single channel-single trial P300 detection algorithm. In: 21st Iranian Conference on Electrical Engineering (ICEE), pp. 1–5. IEEE (2013)Google Scholar
  15. 15.
    Herman, P.A., Prasad, G., McGinnity, T.M.: Designing an interval type-2 fuzzy logic system for handling uncertainty effects in brain–computer interface classification of motor imagery induced EEG patterns. IEEE Trans. Fuzzy Syst. 25(1), 29–42 (2017)CrossRefGoogle Scholar
  16. 16.
    Hoffmann, U., Vesin, J.M., Ebrahimi, T., Diserens, K.: An efficient P300-based brain–computer interface for disabled subjects. J. Neurosci. Methods 167(1), 115–125 (2008)CrossRefGoogle Scholar
  17. 17.
    Hsu, H.T., Lee, W.K., Shyu, K.K., Yeh, T.K., Chang, C.Y., Lee, P.L.: Analyses of EEG oscillatory activities during slow and fast repetitive movements using Holo-Hilbert spectral analysis. IEEE Trans. Neural Syst. Rehabilit. Eng. 26(9), 1659–1668 (2018)CrossRefGoogle Scholar
  18. 18.
    Iturrate, I., Antelis, J.M., Kubler, A., Minguez, J.: A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot. 25(3), 614–627 (2009)CrossRefGoogle Scholar
  19. 19.
    Jones, E.G., Mendell, L.M.: Assessing the decade of the brain. Science 284, 739 (1999)CrossRefGoogle Scholar
  20. 20.
    Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., Ritter, H.: BCI competition 2003-data set IIb: support vector machines for the P300 speller paradigm. IEEE Trans. Biomed. Eng. 51(6), 1073–1076 (2004)CrossRefGoogle Scholar
  21. 21.
    Kar, R., Konar, A., Chakraborty, A., Nagar, A.K.: Detection of signaling pathways in human brain during arousal of specific emotion. In: International Joint Conference on Neural Networks (IJCNN), pp. 3950–3957 (2014)Google Scholar
  22. 22.
    Key, A.P.F., Dove, G.O., Maguire, M.J.: Linking brainwaves to the brain: an ERP primer. Dev. Neuropsychol. 27(2), 183–215 (2005)CrossRefGoogle Scholar
  23. 23.
    Kübler, A., Furdea, A., Halder, S., Hammer, E.M., Nijboer, F., Kotchoubey, B.: A brain–computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Ann. N. Y. Acad. Sci. 1157(1), 90–100 (2009)CrossRefGoogle Scholar
  24. 24.
    Lahiri, R., Rakshit, P., Konar, A., Nagar, A.K.: Evolutionary approach for selection of optimal EEG electrode positions and features for classification of cognitive tasks. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4846–4853 (2016)Google Scholar
  25. 25.
    Li, K., Sankar, R., Arbel, Y., Donchin, E.: Single trial independent component analysis for P300 BCI system. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4035–4038. IEEE (2009)Google Scholar
  26. 26.
    Liew, V.K.: Which lag length selection criteria should we employ? Econ. Bull. 3(33), 1–9 (2004)Google Scholar
  27. 27.
    Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4(2), R1 (2007)CrossRefGoogle Scholar
  28. 28.
    Magee, R., Givigi, S.: A genetic algorithm for single-trial P300 detection with a low-cost EEG headset. In: 9th Annual IEEE International Systems Conference (SysCon), 2015, pp. 230–234. IEEE (2015)Google Scholar
  29. 29.
    Mandal, R., Halder, A., Bhowmik, P., Konar, A., Chakraborty, A., Nagar, A.K.: Uncertainty management in type-2 fuzzy face-space for emotion recognition. In: IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1902–1909. IEEE (2011)Google Scholar
  30. 30.
    Mendel, J.M., John, R.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)CrossRefGoogle Scholar
  31. 31.
    Mezura-Montes, E., Reyes-Sierra, M., Coello, C.A.C.: Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution, pp. 173–196. Springer, Berlin (2008)CrossRefGoogle Scholar
  32. 32.
    Pfurtscheller, G., Zalaudek, K., Neuper, C.: Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalogr. Clin. Neurophysiol. Electromyogr. Motor Control. 109(2), 154–160 (1998)CrossRefGoogle Scholar
  33. 33.
    Piccione, F., Giorgi, F., Tonin, P., Priftis, K., Giove, S., Silvoni, S., Palmas, G., Beverina, F.: P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin. Neurophysiol. 117(3), 531–537 (2006)CrossRefGoogle Scholar
  34. 34.
    Polich, J., Ladish, C., Bloom, F.E.: P300 assessment of early Alzheimer’s disease. Clin. Neurophysiol. 77(3), 179–189 (1990)Google Scholar
  35. 35.
    Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabilit. Eng. 8(4), 441–446 (2000)CrossRefGoogle Scholar
  36. 36.
    Rejer, I.: Genetic algorithms in EEG feature selection for the classification of movements of the left and right hand. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES, pp. 597–589 (2013)Google Scholar
  37. 37.
    Rosenfeld, J.P.: Applied psychophysiology and biofeedback of event-related potentials (brain waves): historical perspective, review, future directions. Biofeedback Self-Regul. 15(2), 99–119 (1990)CrossRefGoogle Scholar
  38. 38.
    Saha, A., Konar, A., Chatterjee, A., Ralescu, A., Nagar, A.K.: EEG analysis for olfactory perceptual-ability measurement using a recurrent neural classifier. IEEE Trans. Hum. Mach. Syst. 44(6), 717–730 (2014)CrossRefGoogle Scholar
  39. 39.
    Salimi-Khorshidi, G., Nasrabadi, A.M., Golpayegani, M.H.: Fusion of classic P300 detection methods’ inferences in a framework of fuzzy labels. Artif. Intell. Med. 44(3), 247–259 (2008)CrossRefGoogle Scholar
  40. 40.
    Schroder, M., Bogdan, M., Hinterberger, T., Birbaumer, N.: Automated EEG feature selection for brain computer interfaces. In: First International IEEE EMBS Conference on Neural Engineering, pp. 626–629 (2003)Google Scholar
  41. 41.
    Seber, G.A.F., Lee, A.J.: Linear Regression Analysis. Wiley, Hoboken (2012)zbMATHGoogle Scholar
  42. 42.
    Seltman, H.J.: Experimental Design and Analysis. Carnegie Mellon University, Pittsburgh (2012)Google Scholar
  43. 43.
    Smulders, F.T., Kenemans, J.L., Kok, A.: A comparison of different methods for estimating single-trial P300 latencies. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 92(2), 107–114 (1994)CrossRefGoogle Scholar
  44. 44.
    Xie, S., Wu, Y., Zhang, Y., Zhang, J., Liu, C.: Single channel single trial P300 detection using extreme learning machine: compared with BPNN and SVM. In: International Joint Conference on Neural Networks (IJCNN), pp. 544–549. IEEE (2014)Google Scholar
  45. 45.
    Zhang, R., Xu, P., Chen, R., Li, F., Guo, L., Li, P., Zhang, T., Yao, D.: Predicting inter-session performance of SMR-based brain–computer interface using the spectral entropy of resting-state EEG. Brain Topogr. 28(5), 680–690 (2015)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  1. 1.Artificial Intelligence Laboratory, Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Computer Science and EngineeringSt. Thomas’ College of Engineering and TechnologyKolkataIndia

Personalised recommendations