A weighted normalized likelihood procedure for empirical land change modeling

  • J. Ronald Eastman
  • Stefano C. CremaEmail author
  • Hannah R. Rush
  • Kaixi Zhang
Original Article


A critical foundation for empirical land change modeling is the mapping of transition potentials—quantitative evaluations of the readiness or suitability of land to go through a transition. This paper presents a procedure based on empirically determined normalized likelihoods of transition. It shows that these normalized likelihoods equate to posterior probabilities if case–control sampling is carried out among historical instances of change and persistence. The posterior probabilities can then be aggregated at the pixel level across multiple covariates using linear opinion pooling where the pixel-specific weight for each covariate is determined locally by its ability to distinguish between the alternatives of change or persistence. Thus, covariates with spatially varying diagnostic ability can be productively incorporated. The resulting algorithm is shown to have a skill comparable to that of a multi-layer perceptron approach with the advantage of high efficiency and amenability to distributed processing in a cloud environment.


Land-use change Land-cover change Model development Model evaluation Empirical modeling Machine learning 



This research was conducted as part of a grant from Esri Inc. to develop a cloud-based implementation of Clark Labs’ Land Change Modeler. We are very grateful to Esri for this support.

Supplementary material

40808_2019_584_MOESM1_ESM.docx (11.6 mb)
Supplementary material 1 (DOCX 11894 KB)


  1. Angelsen A, Boucher D, Brown S, Valerie M, Streck C, Zarin D (2011) Modalities for REDD+ reference levels: technical and procedural issues. The Meridian InstituteGoogle Scholar
  2. Berry MW, Hazen BC, MacIntyre RL, Flamm RO (1996) LUCAS: a system for modeling land-use change. IEEE Comput Sci Eng 3(1):24–35CrossRefGoogle Scholar
  3. Clements MP, Harvey DI (2011) Combining probability forecasts. Int J Forecast 27(2):208–223CrossRefGoogle Scholar
  4. Cohen JA (1960) Coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46CrossRefGoogle Scholar
  5. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46CrossRefGoogle Scholar
  6. Eastman JR (2006) IDRISI 15.0: The, Andes edn. Clark University, WorcesterGoogle Scholar
  7. Eastman JR (2014) The TerrSet geospatial monitoring and modeling system. Clark University, WorcesterGoogle Scholar
  8. Eastman JR, Solorzano LA, Van Fossen ME (2005) Transition potential modeling for land-cover change. In: Maguire DJ, Batty M, Goodchild MF (eds) GIS, spatial analysis, and modeling. ESRI Press, California, pp 357–385Google Scholar
  9. Flach P (2012) Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press, Cambridge, EnglandCrossRefGoogle Scholar
  10. Heidke P (1926) Berechnung des erfolges und der gute der windstarkvorhersagen im sturmwarnungsdienst. Geogr Ann 8:301–349Google Scholar
  11. Iizuka K, Johnson BA, Onishi A, Magcale-Macandog DB, Endo I, Bragais M (2017) Modeling future urban sprawl and landscape change in the Laguna de Bay Area, Philippines. Land 6:2. CrossRefGoogle Scholar
  12. Jordan MI (1995) Why the logistic function? A tutorial discussion on probabilities and neural networks, MIT computational cognitive science, MIT Computational Science Report 9503Google Scholar
  13. King G, Zeng L (2001a) Explaining rare events in international relations. Int Org 55:693–715CrossRefGoogle Scholar
  14. King G, Zeng L (2001b) Logistic regression in rare events data. Polit Anal 9:137–163CrossRefGoogle Scholar
  15. Lin Y-P, Chu H-J, Wu C-F, Verburg PH (2011) Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling—a case study. Int J Geogr Inf Sci 25(1):65–87CrossRefGoogle Scholar
  16. Lobo JM, Jiménez-Valverdel A, Real R (2007) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151CrossRefGoogle Scholar
  17. National Research Council (2014) Advancing land change modeling: opportunities and research requirements. The National Academies Press, Washington. Google Scholar
  18. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065. CrossRefGoogle Scholar
  19. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  20. Pijanowski BC, Brown DG, Shellito BA, Manik GA (2002) Using neural networks and GIS to forecast land use changes: a land transformation model. Comput Environ Urban Syst 26(6):553–575CrossRefGoogle Scholar
  21. Platt J (2000) Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola A, Bartlett P, Scholkopf B, Schuurmans D (eds) Advances in large margin classifiers. MIT Press, CambridgeGoogle Scholar
  22. Pontius RG Jr (2000) Quantification error versus location error in the comparison of Tso, B., and Mather, P.M., 394 (2011) categorical maps. Photogram Eng Remote Sens 66(8):1011–1016Google Scholar
  23. Pontius RG Jr, Schneider L (2001) Land-use change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85:239–248CrossRefGoogle Scholar
  24. Pontius R Jr, Parmentier B (2014) Recommendations for using the relative operating characteristic (ROC). Landsc Ecol 29:367–382CrossRefGoogle Scholar
  25. Pontius RG Jr, Cornell JD, Hall CAS (2001) Modeling the spatial pattern of land use change with GEOMOD2: application and validation for Costa Rica. Agric Ecosyst Environ 1775:1–13Google Scholar
  26. Ranjan R, Gneiting T (2010) Combining probability forecasts. Stat Methodol 72(1):71–91CrossRefGoogle Scholar
  27. Rish I (2001) An empirical study of the naïve Bayes classifier. IBM Research Report RC 22230Google Scholar
  28. Roberts HV (1965) Probabilistic prediction. J Am Stat Assoc 60(309):50–62CrossRefGoogle Scholar
  29. Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27(3):832. CrossRefGoogle Scholar
  30. Soares-Filho BS, Pennachin CL, Cerqueira G (2002) DINAMICA EGO—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154(3):217–235CrossRefGoogle Scholar
  31. Swets JA (1973) The relative operating characteristic in psychology. Science 240:1285–1293CrossRefGoogle Scholar
  32. Tso B, Mather PM (2001) classification methods for remotely sensed data. Taylor and Francis, New YorkCrossRefGoogle Scholar
  33. Turner BL II, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci USA 104:20666–20671CrossRefGoogle Scholar
  34. Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Sharifah Mastura SA (2002) Modeling the spatial dynamics of regional land use: the CLUE-S Model. Environ Manage 30(3):391–405CrossRefGoogle Scholar
  35. Verified Carbon Standard (2013) VCS module VMD0007 REDD methodological module: estimation of baseline carbon stock changes and greenhouse gas emissions from unplanned deforestation (BL-UP) version 3.1. Accessed 8 Dec 2018
  36. Weiss GG (2004) Mining with rarity: a unifying framework. SIGKDD Explorations 6(1):7–19CrossRefGoogle Scholar
  37. Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research challenges. J Internet Ser Appl 1(1):7–18. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of GeographyClark UniversityWorcesterUSA
  2. 2.Clark LabsClark UniversityWorcesterUSA
  3. 3.ESRIRedlandsUSA

Personalised recommendations