Advertisement

Modeling Earth Systems and Environment

, Volume 5, Issue 1, pp 331–352 | Cite as

Integration of GIS and statistical approach in mapping of urban sprawl and predicting future growth in Midnapore town, India

  • Santanu Dinda
  • Kousik Das
  • Nilanjana Das Chatterjee
  • Subrata GhoshEmail author
Original Article
  • 66 Downloads

Abstract

The spatial expansion of cities appears as an accelerated phenomenon and known as urban sprawl. Usually, the exertion of creating smart growth and sustainable growth becomes in curb because urban sprawl is an unplanned and haphazard growth of urban areas. Therefore, planners should be accurately investigate the trend, patterns and directions of urban growth for sustainable management. This study highlights the existing pattern of the urban sprawl of Midnapore town from 1991 to 2017, using the Normalized Difference Built-up Index and Shannon’s entropy and simulated urban growth of 2030 by Markov chain model. Without overlooking the proviso of scientific urban research, an intensive field survey had been done to find out spatial determinants of urban expansion. Four hypotheses have been selected and factor analysis was applied with the multiple regression analysis to find out the factors of urban growth. Comparatively low land price, distribution of reclaimed land, the benefit of open space in the urban fringe and an opportunity of income are major factors of urban growth. Finally, the potential strategies have been proposed for sustainable management and conservation of the local environment.

Keywords

Urban sprawl Shannon’s entropy Factor analysis Markov chain model Sustainable management Midnapore town 

Notes

Acknowledgements

The authors are thankful to Miss. Sanchita Barman for cooperating field survey and also debt to the respondents of the study area for their valuable response. Author S. Ghosh and S. Dinda are are grateful to the University Grant Commission (UGC), India, for their financial support (research fellowship). The authors are also like to thanks to the anonymous reviewers for their constructive comments.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

Supplementary material

40808_2018_536_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 29 KB)

References

  1. Aithal BH, Vinay S, Ramachandra TV (2018) Simulating urban growth by two state modeling and connected network. Model Earth Syst Environ.  https://doi.org/10.1007/s40808-018-0506-1 Google Scholar
  2. Alberti M (2008) Advances in urban ecology: integrating humans and ecological processes in urban ecosystems. Urban Ecosyst.  https://doi.org/10.1007/978-0-387-75510-6 Google Scholar
  3. Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land Use and land cover classification system for use with remote sensor data. Geological survey professional paper 964, U.S. Government Printing Office, Washington, DC.  https://doi.org/10.1016/j.jpsychores.2005.02.009
  4. Arribas-Bel D, Nijkamp P, Scholten H (2011) Multidimensional urban sprawl in Europe: a self-organizing map approach. Comput Environ Urban Syst 35(4):263–275Google Scholar
  5. Arsanjani JJ, Helbich M, Kainz W, Boloorani AD (2012) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf 21(1):265–275.  https://doi.org/10.1016/j.jag.2011.12.014 Google Scholar
  6. Atu JE, Ayama OR, Eja EI (2013) Urban sprawl effects on biodiversity in peripheral agricultural lands in Calabar, Nigeria. J Environ Earth Sci 3(7):219–231Google Scholar
  7. Aurand A (2013) Does sprawl induce affordable housing? Growth Change 44(4):631–649.  https://doi.org/10.1111/grow.12024 Google Scholar
  8. Bagan H, Yamagata Y (2012) Landsat analysis of urban growth: how Tokyo became the world’s largest megacity during the last 40 years. Remote Sens Environ 127:210–222Google Scholar
  9. Bagheri B, Tousi SN (2017) An explanation of urban sprawl phenomenon in Shiraz Metropolitan Area (SMA). Cities 73:71–90Google Scholar
  10. Barnes KB, Morgan JM, Roberge MC, Lowe S (2001) Sprawl development: its patterns, consequences, and measurement. Towson University, Towson, pp 1–24Google Scholar
  11. Bednar-Friedl B, Koland O, Steininger KN (2011) Urban sprawl and policy responses: a general equilibrium analysis of residential choice. J Environ Plan Manag 54(1):145–168.  https://doi.org/10.1080/09640568.2010.502766 Google Scholar
  12. Bernstein MJ, Wiek A, Brundiers K, Pearson K, Minowitz A, KayB, Golub A (2016) Mitigating urban sprawl effects: a collaborative tree and shade intervention in Phoenix, Arizona, USA. Local Environ 21(4):414–431.  https://doi.org/10.1080/13549839.2014.965672 Google Scholar
  13. Bhanjee S, Zhang CH (2018) Mapping latest patterns of urban sprawl in Dar es Salaam, Tanzania. Pap Appl Geogr.  https://doi.org/10.1080/23754931.2018.1471413 Google Scholar
  14. Bhatta B (2010) Analysis of urban growth and sprawl from remote sensing data. Analysis.  https://doi.org/10.1007/978-3-642-05299-6 Google Scholar
  15. Bhatta B, Saraswati S, Bandyopadhyay D (2010) Urban sprawl measurement from remote sensing data. Appl Geogr 30(4):731–740.  https://doi.org/10.1016/j.apgeog.2010.02.002 Google Scholar
  16. Bhatti SS, Tripathi NK (2014) Built-up area extraction using Landsat 8 OLI imagery. GISci Remote Sens 51(4):445–467.  https://doi.org/10.1080/15481603.2014.939539 Google Scholar
  17. Biswas D, Sarkar A (2015) Baruipur: a sprawling town in West Bengal. In: Mandal DK (ed) Applications of geospatial technology for sustainable. University of North Bengal, Darjeeling, pp 210–219Google Scholar
  18. Brueckner JK, Kim HA (2003) Urban sprawl and the property tax. Int Tax Public Finance 10(1):5–23.  https://doi.org/10.1023/A:1022260512147 Google Scholar
  19. Canedoli C, Crocco F, Comolli R, Padoa-Schioppa E (2018) Landscape fragmentation and urban sprawl in the urban region of Milan. Landsc Res 43(5):632–651.  https://doi.org/10.1080/01426397.2017.1336206 Google Scholar
  20. Census of India (2011) Final population total. http://censusindia.gov.in. Accessed 12 Jan 2018
  21. Cerny CA, Kaiser HF (1977) A study of measure sampling adequacy for factor-analytic correlation metrics. Multivar Behav Res 12(1):43–47.  https://doi.org/10.1207/s15327906mbr1201 Google Scholar
  22. Chen J, Changtsung K, Karacsonyi D, Zhang X (2014) Comparing urban land expansion and its driving factors in Shenzhen and Dongguan, China. Habitat Int 43:61–71.  https://doi.org/10.1016/j.habitatint.2014.01.004 Google Scholar
  23. Cheng J, Masser I (2003) Urban growth pattern modeling: a case study of Wuhan City, PR China. Landsc Urban Plan 62(4):199–217.  https://doi.org/10.1016/S0169-2046(02)00150-0 Google Scholar
  24. Civco DI, Hurd JD, Wilson EH, Chester L (2002) Quantifying and describing urbanizing landscapes in the Northeast United States. Photogramm Eng Remote Sens 68(10):1083–1090Google Scholar
  25. Conforti M, Pascale S, Robustelli G, Sdao F (2014) Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena 113:236–250Google Scholar
  26. Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices. Photogramm Rec.  https://doi.org/10.1111/j.1477-9730.2010.00574_2.x Google Scholar
  27. Das Chatterjee N, Chatterjee S, KhanA (2015) Spatial modeling of urban sprawl around Greater Bhubaneswar city, India. Model Earth Syst Environ 2(1):14.  https://doi.org/10.1007/s40808-015-0065-7 Google Scholar
  28. Deng C, Wu C (2013) A spatially adaptive spectral mixture analysis for mapping subpixel urban impervious surface distribution. Remote Sens Environ 133:62–70.  https://doi.org/10.1016/j.rse.2013.02.005 Google Scholar
  29. District Human Development Report (2011) District Human Development report PaschimMedinipur district. Development and planning department. Government of West BengalGoogle Scholar
  30. Dolui G, Das S, Satpathy S (2014) An application of remote sensing and GIS to analyze urban expansion and land use land cover change of Midnapore municipality, WB, India. Int Res J Earth Sci 2:8–20Google Scholar
  31. Du S, Wang Q, Guo L (2014) Spatially varying relationships between land-cover change and driving factors at multiple sampling scales. J Environ Manag 137:101–110.  https://doi.org/10.1016/j.jenvman.2014.01.037 Google Scholar
  32. Dupras J, Marull J, Parcerisas L, Coll F, Gonzalez A, Girard M, Tello E (2016) The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ Sci Policy 58:61–73.  https://doi.org/10.1016/j.envsci.2016.01.005 Google Scholar
  33. Eastman JR (2012) IDRISI selva manual and tutorial manual version 17. Clark University, WorcesterGoogle Scholar
  34. Epstein J, Payne K, Kramer E (2002) Techniques for mapping suburban sprawl. Photogramm Eng Remote Sens 63(9):913–918Google Scholar
  35. Ewing R (1994) Cause, characteristics and effects of sprawl: a literature review of Smart Growth. Environ Urban Issues 21(2):1–15Google Scholar
  36. Feng L, Du PJ, Li H, Zhu LJ (2015) Measurement of urban fringe sprawl in Nanjing between 1984 and 2010 Using Multidimensional Indicators. Geogr Res 53(2):184–198.  https://doi.org/10.1111/1745-5871.12104 Google Scholar
  37. Flew T (2012) Creative suburbia: rethinking urban cultural policy—the Australian case. Int J Cult Stud 15(3):231–246.  https://doi.org/10.1177/1367877911433746 Google Scholar
  38. Foody GM (1992) On the compensation for chance agreement in image classification accuracy assessment. Photogramm Eng Remote Sens 58(10):1459–1460Google Scholar
  39. Forman RTT (2008) The urban region: natural systems in our place, our nourishment, our home range, our future. Landsc Ecol 23(3):251–253.  https://doi.org/10.1007/s10980-008-9209-8 Google Scholar
  40. Ghosh S, Dinda S, Das Chatterjee N, Das K (2018) Analyzing risk factors for shrinkage and transformation of East Kolkata Wetland, India. Spat Inf Res.  https://doi.org/10.1007/s41324-018-0212-0 Google Scholar
  41. Gómez-Antonio M, Hortas-Rico M, Li L (2016) The causes of urban sprawl in Spanish urban areas: a spatial approach. Spat Econ Anal 11(2):219–247.  https://doi.org/10.1080/17421772.2016.1126674 Google Scholar
  42. Haack BN, Rafter A (2006) Urban growth analysis and modeling in the Kathmandu Valley, Nepal. Habitat Int 30(4):1056–1065.  https://doi.org/10.1016/j.habitatint.2005.12.001 Google Scholar
  43. Hair JFJ, Anderson RE (1998) Multivariate data analysis. Prentice Hall International, LondonGoogle Scholar
  44. Han J, Hayashi Y, Cao X, Imura H (2009) Application of an integrated system dynamics and cellular automata model for urban growth assessment: a case study of Shanghai, China. Landsc Urban Plan 91(3):133–141Google Scholar
  45. Haregeweyn N, Fikadu G, Tsunekawa A, Tsubo M, Meshesha DT (2012) The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: a case study of Bahir Dar, Ethiopia. Landsc Urban Plan 106(2):149–157Google Scholar
  46. Hashim M, Noor NM, Marghany M (2011) Modeling sprawl of unauthorized development using geospatial technology: case study in Kuantan district, Malaysia. Int J Digit Earth 4(3):223–238. https://doi.org/10.1080/17538947.2010.494737 Google Scholar
  47. Hasse J (2004) A geospatial approach to measuring new development tracts for characteristics of sprawl. Landsc J Landsc J 23(1):68–69Google Scholar
  48. Herold M, Goldstein NC, Clarke KC (2003) The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sens Environ 86(3):286–302.  https://doi.org/10.1016/S0034-4257(03)00075-0 Google Scholar
  49. Huang B, Zhang L, Wu B (2009) Spatiotemporal analysis of rural–urban land conversion. Int J Geogr Inf Sci 23(3):379–398.  https://doi.org/10.1080/13658810802119685 Google Scholar
  50. Inostroza L, Baur R, Csaplovics E (2013) Urban sprawl and fragmentation in Latin America: a dynamic quantification and characterization of spatial patterns. J Environ Manag 115:87–97.  https://doi.org/10.1016/j.jenvman.2012.11.007 Google Scholar
  51. Jafari M, Majedi H, Monavari SM, Alesheikh AA, Zarkesh MK (2016) Dynamic simulation of urban expansion through a CA-Markov model case study: Hyrcanian region, Gilan, Iran. Eur J Remote Sens 49:513–529.  https://doi.org/10.5721/EuJRS20164927 Google Scholar
  52. Jat MK, Garg PK, Khare D (2008) Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int J Appl Earth Obs Geoinf 10(1):26–43.  https://doi.org/10.1016/j.jag.2007.04.002 Google Scholar
  53. Joshi PK, Lele N, Agarwal SP (2006) Entropy as an indicator of fragmented landscape. Curr Sci 91(3):276–278Google Scholar
  54. Kamusoko C, Aniya M, Adi B, Manjoro M (2009) Rural sustainability under threat in Zimbabwe—simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl Geogr 29(3):435–447Google Scholar
  55. Khan A, Chatterjee S, Akbari H, Bhatti SS, Dinda A, Mitra C, Hong H, Doan VQ (2017) Step-wise land-class elimination approach for extracting mixed-type built-up areas of Kolkata megacity. Geocarto Int.  https://doi.org/10.1080/10106049.2017.1408704 Google Scholar
  56. Lata KM, Rao CHS, Prasad VK, Badarinath KVS, Raghavaswamy V (2001) Measuring urban sprawl: a case study of Hyderabad. GIS Dev 5(12):26–29Google Scholar
  57. Li C, Li J, Wu J (2013a) Quantifying the speed, growth modes, and landscape pattern changes of urbanization: a hierarchical patch dynamics approach. Landsc Ecol 28(10):1875–1888.  https://doi.org/10.1007/s10980-013-9933-6 Google Scholar
  58. Li X, Zhou W, Ouyang Z (2013b) Forty years of urban expansion in Beijing: what is the relative importance of physical, socioeconomic, and neighborhood factors? Appl Geogr 38(1):1–10.  https://doi.org/10.1016/j.apgeog.2012.11.004 Google Scholar
  59. Liu X, Li X, Chen Y, Tan Z, Li S, Ai B (2010) A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc Ecol 25(5):671–682.  https://doi.org/10.1007/s10980-010-9454-5 Google Scholar
  60. Liu Y, Dai L, Xiong H (2015) Simulation of urban expansion patterns by integrating auto-logistic regression, Markov chain and cellular automata models. J Environ Plan Manag 58(6):1113–1136.  https://doi.org/10.1080/09640568.2014.916612 Google Scholar
  61. Liu Y, Fan P, Yue W, Song Y (2018) Impacts of land finance on urban sprawl in China: the case of Chongqing. Land Use Policy 72:420–432.  https://doi.org/10.1016/j.landusepol.2018.01.004 Google Scholar
  62. Lo CP, Yang X (2002) Drivers of land-use/land-cover changes and dynamic modeling for the Atlanta, Georgia metropolitan area. Photogramm Eng Remote Sens 68(10):1073–1082Google Scholar
  63. Lu D, Weng Q (2005) Urban classification using full spectral information of landsat ETM + imagery in Marion county, Indiana. Photogramm Eng Remote Sens 71(11):1275–1284.  https://doi.org/10.14358/PERS.71.11.1275 Google Scholar
  64. Lu KS, Allen JS, Liu G, Wang X (2015) Assessing impacts of urban expansion on coastal ecosystems based on different growth scenarios. Pap Appl Geogr 1(2):143–151Google Scholar
  65. Luo J, Wei YHD (2009) Modeling spatial variations of urban growth patterns in Chinese cities: the case of Nanjing. Landsc Urban Plan 91(2):51–64.  https://doi.org/10.1016/j.landurbplan.2008.11.010 Google Scholar
  66. Maithani S (2010) Cellular automata based model of urban spatial growth. J Indian Soc Remote Sens 38(4):604–610.  https://doi.org/10.1007/s12524-010-0053-3 Google Scholar
  67. Malik A, Abdalla R (2017) Agent-based modelling for urban sprawl in the region of Waterloo, Ontario, Canada. Model Earth Syst Environ 3(1):7.  https://doi.org/10.1007/s40808-017-0271-6 Google Scholar
  68. Masoumi HE (2014) Urban Sprawl in mid-sized cities of Mena, evidence from Yazd and Kashan in Central Iran. Manag Res Pract 6(2):25–41Google Scholar
  69. Mishra VN, Rai PK, Mohan K (2014) Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. J Geogr Inst Jovan Cvijic SASA 64(1):111–127Google Scholar
  70. Mithun S, Chattopadhyay S, Bhatta B (2016) Analyzing urban dynamics of metropolitan Kolkata, India by using landscape metrics. Pap Appl Geogr 2(3):284–297Google Scholar
  71. Mohammady S, Delavar MR (2016) Urban sprawl assessment and modeling using landsat images and GIS. Model Earth Syst Environ 2(3):155.  https://doi.org/10.1007/s40808-016-0209-4 Google Scholar
  72. Mohd Noor N, Rosni NA, Hashim M, Abdullah A (2018) Developing land use geospatial indices (LUGI) for sprawl measurement in alpha cities: case study of Kuala Lumpur, Malaysia. Cities.  https://doi.org/10.1016/j.cities.2018.05.012 Google Scholar
  73. Mondal B, Das DN, Dolui G (2015) Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach. Model Earth Syst Environ 1(4):29.  https://doi.org/10.1007/s40808-015-0026-1 Google Scholar
  74. Mondal B, Das DN, Bhatta B (2017) Integrating cellular automata and Markov techniques to generate urban development potential surface: a study on Kolkata agglomeration. Geocarto Int 32(4):401–419.  https://doi.org/10.1080/10106049.2016.1155656 Google Scholar
  75. Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistic. Ecol Model 62(4):275–293.  https://doi.org/10.1016/0304-3800(92)90003-W Google Scholar
  76. Mosammam HM, Nia JT, Khani H, Teymouri A, Kazemi M (2017) Monitoring land use change and measuring urban sprawl based on its spatial forms: the case of Qom city. Egypt J Remote Sens Space Sci 20(1):103–116Google Scholar
  77. Osman T, Divigalpitiya P, Arima T (2016) Driving factors of urban sprawl in Giza governorate of the Greater Cairo Metropolitan Region using a logistic regression model. Int J Urban Sci 20(2):206–225.  https://doi.org/10.1080/12265934.2016.1162728 Google Scholar
  78. Oueslati W, Alvanides S, Garrod G (2015) Determinants of urban sprawl in European cities. Urban Stud 52(9):1594–1614.  https://doi.org/10.1177/0042098015577773 Google Scholar
  79. Ozturk D (2017) Assessment of urban sprawl using Shannon’s entropy and fractal analysis: a case study of Atakum, Ilkadim and Canik (Samsun, Turkey). J Environ Eng Landsc Management 25(3):264–276Google Scholar
  80. Pal S, Ziaul S (2017) Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt J Remote Sens Space Sci 20(1):125–145.  https://doi.org/10.1016/j.ejrs.2016.11.003 Google Scholar
  81. Palmate SS, Pandey A, Mishra SK (2017) Modelling spatiotemporal land dynamics for a trans-boundary river basin using integrated cellular automata and Markov chain approach. Appl Geogr 82:11–23.  https://doi.org/10.1016/j.apgeog.2017.03.001 Google Scholar
  82. Punia M, Singh L (2012) Entropy approach for assessment of urban growth: a case study of Jaipur, India. J Indian Soc Remote Sens 40(2):231–244.  https://doi.org/10.1007/s12524-011-0141-z Google Scholar
  83. Rabbani G, Shafaqi S, Rahnama MR (2018) Urban sprawl modeling using statistical approach in Mashhad, northeastern Iran. Model Earth Syst Environ 4(1):141–149.  https://doi.org/10.1007/s40808-017-0404-y Google Scholar
  84. Resnik DB (2010) Urban sprawl, smart growth, and deliberative democracy. Am J Public Health 100(10):1852–1856.  https://doi.org/10.2105/AJPH.2009.182501 Google Scholar
  85. Rubiera Morollón F, González Marroquin VM, Pérez Rivero JL (2016) Urban sprawl in Spain: differences among cities and causes. Eur Plan Stud 24(1):207–226.  https://doi.org/10.1080/09654313.2015.1080230 Google Scholar
  86. Salvati L, Carlucci M (2016) Patterns of sprawl: the socioeconomic and territorial profile of dispersed urban areas in Italy. Reg Stud 50(8):1346–1359.  https://doi.org/10.1080/00343404.2015.1009435 Google Scholar
  87. Schneider A,. Woodcock CE (2008) Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud 45(3):659–692.  https://doi.org/10.1177/0042098007087340 Google Scholar
  88. Sen S (2011) Effect of urban sprawl on human habitation in urban fringe and peri-urban areas in Kolkata metropolitan area. India J 8(4):58–66Google Scholar
  89. Seto KC, Fragkias M (2005) Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landsc Ecol 20(7):871–888.  https://doi.org/10.1007/s10980-005-5238-8 Google Scholar
  90. Shafizadeh Moghadam H, Helbich M (2013) Spatiotemporal urbanization processes in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr 40:140–149.  https://doi.org/10.1016/j.apgeog.2013.01.009 Google Scholar
  91. Siddiqui A, Siddiqui A, Maithani S, Jha AK, Kumar P, Srivastav SK (2017) Urban growth dynamics of an Indian metropolitan using CA Markov and logistic regression. Egypt J Remote Sens Space Sci.  https://doi.org/10.1016/j.ejrs.2017.11.006 Google Scholar
  92. Sudhira HS, Ramachandra TV, Jagadish KS (2004) Urban sprawl: metrics, dynamics and modelling using GIS. Int J Appl Earth Obs Geoinf 5(1):29–39.  https://doi.org/10.1016/j.jag.2003.08.002 Google Scholar
  93. Sun H, Forsythe W, Waters N (2007) Modeling urban land use change and urban sprawl: Calgary, Alberta, Canada. Netw Spat Econ 7(4):353–376Google Scholar
  94. Sung CY, Yi YJ, Li MH (2013) Impervious surface regulation and urban sprawl as its unintended consequence. Land Use Policy 32:317–323.  https://doi.org/10.1016/j.landusepol.2012.10.001 Google Scholar
  95. Taubenböck H, Wegmann M, Berger C, Breunig M, Roth A, Mehl H (2008) Spatiotemporal analysis of Indian megacities. Proc Int Arch Photogramm Remote Sens Spat Inf Sci 37:75–82Google Scholar
  96. Terzi F, Bolen F (2009) Urban sprawl measurement of Istanbul. Eur Plan Stud 17(10):1559–1570.  https://doi.org/10.1080/09654310903141797 Google Scholar
  97. Tewolde MG, Cabral P (2011) Urban sprawl analysis and modeling in Asmara, Eritrea. Remote Sens 3(10):2148–2165.  https://doi.org/10.3390/rs3102148 Google Scholar
  98. Thapa RB, Murayama Y (2009) Examining spatiotemporal urbanization patterns in Kathmandu Valley, Nepal: remote sensing and spatial metrics approaches. Remote Sens 1(3):534–556.  https://doi.org/10.3390/rs1030534 Google Scholar
  99. Thebpanya P, Bhuyan I (2015) Urban sprawl and the loss of peri-urban land: a case study of Nakhon Ratchasima Province, Thailand. Pap Appl Geogr 1(1):43–49Google Scholar
  100. Thomas TM (1981) Information statistics in geography, vol 31. Geography Abstract, Norwich, pp 3–35Google Scholar
  101. Tian L, Li Y, Yan Y, Wang B (2017) Measuring urban sprawl and exploring the role planning plays: a shanghai case study. Land Use Policy 67:426–435.  https://doi.org/10.1016/j.landusepol.2017.06.002 Google Scholar
  102. Tran DX, Pla F, Latorre-Carmona P, Myint SW, Caetano M, Kieu HV (2017) Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J Photogramm Remote Sens 124:119–132.  https://doi.org/10.1016/j.isprsjprs.2017.01.001 Google Scholar
  103. Travisi CM, Camagni R, Nijkamp P (2010) Impacts of urban sprawl and commuting: a modelling study for Italy. J Transp Geogr 18(3):382–392.  https://doi.org/10.1016/j.jtrangeo.2009.08.008 Google Scholar
  104. Triantakonstantis D, Stathakis D (2015) Examining urban sprawl in Europe using spatial metrics. Geocarto Int 30(10):1092–1112.  https://doi.org/10.1080/10106049.2015.1027289 Google Scholar
  105. Tu J, Xia ZG, Clarke K, Frei A (2007) Impact of urban sprawl on water quality in Eastern Massachusetts, USA. Environ Manag 40(2):183–200.  https://doi.org/10.1007/s00267-006-0097-x Google Scholar
  106. United Nations (2014) World urbanization prospects. World urbanization prospects: the 2014 revision, highlights.  https://doi.org/10.4054/DemRes.2005.12.9
  107. United States Geological Survey (2016) Landsat 8 (L8) data users handbook. Version 2.0, Department of the Interior U.S. Geological Survey, EROS Sioux Falls, South DakotaGoogle Scholar
  108. Vaz E, de N, Nijkamp, Painho P, Caetano M M (2012) A multi-scenario forecast of urban change: a study on urban growth in the Algarve. Landsc Urban Plan.  https://doi.org/10.1016/j.landurbplan.2011.10.007 Google Scholar
  109. Weng Q (2002) Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J Environ Manag.  https://doi.org/10.1006/jema.2001.0509 Google Scholar
  110. Weng YC (2007) Spatiotemporal changes of landscape pattern in response to urbanization. Landsc Urban Plann 81(4):341–353.  https://doi.org/10.1016/j.landurbplan.2007.01.009 Google Scholar
  111. Wu J, Jenerette GD, Buyantuyev A, Redman CL (2011) Quantifying spatiotemporal patterns of urbanization: the case of the two fastest growing metropolitan regions in the United States. Ecol Complex 8(1):1–8.  https://doi.org/10.1016/j.ecocom.2010.03.002 Google Scholar
  112. Yeh AGO, Li X (2001) Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogramm Eng Remote Sens 67(1):83–90Google Scholar
  113. Yue W, Liu Y, Fan P (2012) Measuring urban sprawl and its drivers in large Chinese cities: the case of Hangzhou. Land Use Policy 31:358–370.  https://doi.org/10.1016/j.landusepol.2012.07.018 Google Scholar
  114. Yue W, Zhang L, Liu Y (2016) Measuring sprawl in large Chinese cities along the Yangtze River via combined single and multidimensional metrics. Habitat Int 57:43–52.  https://doi.org/10.1016/j.habitatint.2016.06.009 Google Scholar
  115. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594.  https://doi.org/10.1080/01431160304987 Google Scholar
  116. Zhang Y, Odeh IO, Han C (2009) Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int J Appl Earth Obs Geoinf 11(4):256–264Google Scholar
  117. Zhang C, Miao C, Zhang W, Chen X (2018) Spatiotemporal patterns of urban sprawl and its relationship with economic development in China during 1990–2010. Habitat Int 79:51–60Google Scholar
  118. Zhou Q, Robson M, Pilesjo P (1998) On the ground estimation of vegetation cover in Australian rangelands. Int J Remote Sens 19(9):1815–1820.  https://doi.org/10.1080/014311698215261 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Geography and Environment ManagementVidyasagar UniversityMidnaporeIndia

Personalised recommendations