Advertisement

Modeling Earth Systems and Environment

, Volume 5, Issue 1, pp 307–329 | Cite as

Relation between urban biophysical composition and dynamics of land surface temperature in the Kolkata metropolitan area: a GIS and statistical based analysis for sustainable planning

  • Subrata GhoshEmail author
  • Nilanjana Das Chatterjee
  • Santanu Dinda
Original Article
  • 70 Downloads

Abstract

The major environmental impacts of urbanization have changed urban biophysical components which ultimately promoted land surface temperature (LST) as well as urban heat island (UHI). This study explores the upshot of land use land cover (LULC) and resultant effect on biophysical components to understand the heat island mechanism in the Kolkata Metropolitan Area (KMA) for four selected time period of 1991, 2001, 2011 and 2017. Six satellite-derived biophysical components were selected for the present analysis: NDBI, NDVI, NDWI, MNDWI, NDBaI and SAVI. Selected bands of Landsat-5 TM and OLI-8 were used for this purpose. The result shows that the built-up area has been increased from 322.68 km2 in 1991 to 982.86 km2 in 2017 and accordingly, LST also rises from 18.47 °C mean LST of 1991 to 23.30 °C mean LST of 2017. The correlation coefficient among the biophysical parameters and LST shows that the highest continuous increasing positive relationship between NDBI and LST (R = 0.71). Moreover, multiple linear regression model (MLR) is adapted to the prediction on LST with the variation of biophysical parameters. Finally, we produced hot spot maps using Getis-Ord-Gi* statistics for the selected year to highlights the hot spot and cold spot area in KMA. The methodology presented in this paper can be broadly applied for the planning purposes because LST monitoring is an important parameter of sustainable urban planning.

Keywords

Land uses land cover change Biophysical indices LST Multiple linear regression (MLR) Hotspot-coldspot areas Kolkata Metropolitan area 

Notes

Acknowledgements

The authors acknowledge to USGS for providing Landsat data. The authors Ghosh, S and Dinda, S are thankful to the University Grant Commission (UGC) for providing research grant.

Compliance with ethical standards

Conflict of interest

The authors have declared that, there has no potential conflict of interest.

References

  1. Adams MP, Smith PL (2014) A systematic approach to model the influence of the type and density of vegetation cover on urban heat using remote sensing. Landsc Urban Plan 132:47–54.  https://doi.org/10.1016/j.landurbplan.2014.08.008 Google Scholar
  2. Adeyeri OE, Akinsanola AA, Ishola KA (2017) Investigating surface urban heat island characteristics over Abuja, Nigeria: relationship between land surface temperature and multiple vegetation indices. Remote Sens Appl Soc Env 7:57–68Google Scholar
  3. Amiri R, Weng Q, Alimohammadi A, Alavipanah SK (2009) Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens Environ 113(12):2606–2617.  https://doi.org/10.1016/j.rse.2009.07.021 Google Scholar
  4. Artis DA, Carnahan WH (1982) Survey of emissivity variability in thermography of urban areas. Remote Sens Env 12(4):313–329.  https://doi.org/10.1016/0034-4257(82)90043-8 Google Scholar
  5. Askne J, Santoro M, Smith G, Fransson JES (2003) Multitemporal repeat-pass SAR interferometry of boreal forests. IEEE Trans Geosci Remote Sens 41:1540–1550.  https://doi.org/10.1109/TGRS.2003.813397 Google Scholar
  6. Avdan U, Jovanovska G (2016) Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J Sens.  https://doi.org/10.1155/2016/1480307 Google Scholar
  7. Bhatta B (2009) Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India. Int J Remote Sens 30(18):4733–4746.  https://doi.org/10.1080/01431160802651967 Google Scholar
  8. Bhatti SS, Tripathi NK (2014) Built-up area extraction using Landsat 8 OLI imagery. GIScience Remote Sens 51(4):445–467.  https://doi.org/10.1080/15481603.2014.939539 Google Scholar
  9. Census of India (2011) Census of india 2011. Government of India http://censusindia.gov.in/DigitalLibrary/Archive_home.aspx
  10. Chen XL, Zhao HM, Li PX, Yin ZY (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Env 104(2):133–146.  https://doi.org/10.1016/j.rse.2005.11.016 Google Scholar
  11. Chen J, Chang K, Karacsonyi D, Zhang X (2014) Comparing urban land expansion and its driving factors in Shenzhen and Dongguan, China. Habitat Int 43:61–71.  https://doi.org/10.1016/j.habitatint.2014.01.004 Google Scholar
  12. Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices. Photogramm Rec.  https://doi.org/10.1111/j.1477-9730.2010.00574_2.x Google Scholar
  13. Connors JP, Galletti CS, Chow WTL (2013) Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecol 28(2):271–283.  https://doi.org/10.1007/s10980-012-9833-1 Google Scholar
  14. Crawley MJ (2007) The R book. Wiley, Hoboken.  https://doi.org/10.1002/9780470515075
  15. Dasgupta S, Gosain AK, Rao S, Roy S, Sarraf M (2013) A megacity in a changing climate: the case of Kolkata. Clim Change 116(3–4):747–766.  https://doi.org/10.1007/s10584-012-0516-3 Google Scholar
  16. Decker EH, Elliott S, Smith FA, Blake DR, Rowland FS (2000) Energy and material flow through the urban ecosystem. Annu Rev Energy Env 25:685–740.  https://doi.org/10.1146/annurev.energy.25.1.685 Google Scholar
  17. Deng C, Wu C (2013) A spatially adaptive spectral mixture analysis for mapping subpixel urban impervious surface distribution. Remote Sens Env 133:62–70.  https://doi.org/10.1016/j.rse.2013.02.005 Google Scholar
  18. Dietz T, Rosa EA, York R (2007) Driving the human ecological footprint. Front Ecol Environ 5(1):13–18.  https://doi.org/10.1890/1540-9295(2007)5%5B13:DTHEF%5D2.0.CO;2 Google Scholar
  19. Drǎguţ L, Blaschke T (2006) Automated classification of landform elements using object-based image analysis. Geomorphology 81(3–4):330–344.  https://doi.org/10.1016/j.geomorph.2006.04.013 Google Scholar
  20. Erbek FS, Özkan C, Taberner M (2004) Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. Int J Remote Sens 25(9):1733–1748.  https://doi.org/10.1080/0143116031000150077 Google Scholar
  21. ERDAS (2009) ERDAS field guide TM—tutorial. Imagine, Atlanta, GeorgiaGoogle Scholar
  22. Estoque RC, Murayama Y (2017) Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J Photogramm Remote Sens 133:18–29Google Scholar
  23. Foody GM (1992) On the compensation for chance agreement in image classification accuracy assessment. Photogramm Eng Remote Sens 58(10):1459–1460Google Scholar
  24. Gábor P, Jombach S (2010) The relation between the biological activity and the land surface temperature in Budapest. Appl Ecol Env Res 7(3):241–251Google Scholar
  25. Getis A, Ord JK (1992) The Analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206.  https://doi.org/10.1111/j.1538-4632.1992.tb00261.x Google Scholar
  26. Ghosh S, Dinda S, Chatterjee ND, Das K (2018) Analyzing risk factors for shrinkage and transformation of East Kolkata Wetland, India. Spat Inf Res.  https://doi.org/10.1007/s41324-018-0212-0 Google Scholar
  27. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science.  https://doi.org/10.1126/science.1150195 Google Scholar
  28. Guo G, Wu Z, Xiao R, Chen Y, Liu X, Zhang X (2015) Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape Urban Plan 135:1–10.  https://doi.org/10.1016/j.landurbplan.2014.11.007 Google Scholar
  29. Guo G, Zhou X, Wu Z, Xiao R, Chen Y (2016) Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China. Env Model Softw 84:427–439.  https://doi.org/10.1016/j.envsoft.2016.06.021 Google Scholar
  30. Haas J, Ban Y (2014) Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int J Appl Earth Obs Geoinf 30(1):42–55.  https://doi.org/10.1016/j.jag.2013.12.012 Google Scholar
  31. Hoffmann P, Krueger O, Schlünzen KH (2012) A statistical model for the urban heat island and its application to a climate change scenario. Int J Climatol 32(8):1238–1248.  https://doi.org/10.1002/joc.2348 Google Scholar
  32. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Env 25(3):295–309.  https://doi.org/10.1016/0034-4257(88)90106-X Google Scholar
  33. Hull V, Tuanmu MN, Liu J (2015) Synthesis of human-nature feedbacks. Ecol Soc 20:3.  https://doi.org/10.5751/ES-07404-200317 Google Scholar
  34. Jiang J, Tian G (2010) Analysis of the impact of land use/land cover change on land surface temperature with remote sensing. Procedia Environ Sci 2:571–575.  https://doi.org/10.1016/j.proenv.2010.10.062 Google Scholar
  35. Jiménez-Muñoz JC, Sobrino JA, Gillespie A, Sabol D, Gustafson WT (2006) Improved land surface emissivities over agricultural areas using ASTER NDVI. Remote Sens Environ 103(4):474–487.  https://doi.org/10.1016/j.rse.2006.04.012 Google Scholar
  36. Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115(2):692–702.  https://doi.org/10.1016/j.rse.2010.10.011 Google Scholar
  37. Julien Y, Sobrino JA (2009) The yearly land cover dynamics (YLCD) method: an analysis of global vegetation from NDVI and LST parameters. Remote Sens Environ 113(2):329–334.  https://doi.org/10.1016/j.rse.2008.09.016 Google Scholar
  38. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423(May):528–532.  https://doi.org/10.1038/nature01649.1 Google Scholar
  39. Kates RW, Clark WC, Corell R, Hall JM, Jaeger CC, Lowe I, Svedin U (2001) Environment and development: sustainability science. Science 292(5517):641–642.  https://doi.org/10.1126/science.1059386 Google Scholar
  40. Khan A, Chatterjee S, Akbari H, Bhatti SS, Dinda A, Mitra C, Doan Q Van (2017) Step-wise land-class elimination approach for extracting mixed-type built-up areas of Kolkata megacity. Geocarto Int.  https://doi.org/10.1080/10106049.2017.1408704 Google Scholar
  41. KMDA (Kolkata Metropolitan Development Authority) (2011) KMDA annual report. http://www.kmdaonline.org/home/aar_2011. Accessed 27 Jul 2018
  42. Kuang W (2012) Spatio-temporal patterns of intra-urban land use change in Beijing, China between 1984 and 2008. Chin Geogr Sci 22(2):210–220.  https://doi.org/10.1007/s11769-012-0529-x Google Scholar
  43. Li Y, Liu G (2017) Characterizing spatiotemporal pattern of land use change and its driving force based on GIS and landscape analysis techniques in Tianjin during 2000–2015. Sustain (Switz) 9:6.  https://doi.org/10.3390/su9060894 Google Scholar
  44. Li S, Ma Y (2014) Urbanization, economic development and environmental change. Sustainability 6(8):5143–5161.  https://doi.org/10.3390/su6085143 Google Scholar
  45. Li J, Wang X, Wang X, Ma W, Zhang H (2009) Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecol Complex 6(4):413–420.  https://doi.org/10.1016/j.ecocom.2009.02.002 Google Scholar
  46. Li B, Chen D, Wu S, Zhou S, Wang T, Chen H (2016a) Spatio-temporal assessment of urbanization impacts on ecosystem services: case study of Nanjing City, China. Ecol Ind 71:416–427.  https://doi.org/10.1016/j.ecolind.2016.07.017 Google Scholar
  47. Li L, Lu D, Kuang W (2016b) Examining urban impervious surface distribution and its dynamic change in Hangzhou metr0opolis. Remote Sens 8:3.  https://doi.org/10.3390/rs8030265 Google Scholar
  48. Liu F, Zhang Z, Shi L, Zhao X, Xu J, Yi L, Li M (2016) Urban expansion in China and its spatial-temporal differences over the past four decades. J Geog Sci 26(10):1477–1496.  https://doi.org/10.1007/s11442-016-1339-3 Google Scholar
  49. Liu Y, Song W, Deng X (2018) Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional DPSIR-based indicators. Ecol Ind.  https://doi.org/10.1016/j.ecolind.2018.01.029 Google Scholar
  50. Lu X, Shi Y, Chen C, Yu M (2017) Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: a case study of Jiangsu Province. Land Use Policy 69:25–40.  https://doi.org/10.1016/j.landusepol.2017.08.035 Google Scholar
  51. Maki M, Ishiahra M, Tamura M (2004) Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data. Remote Sens Environ 90(4):441–450.  https://doi.org/10.1016/j.rse.2004.02.002 Google Scholar
  52. Markham BL, Barker JL (1985) Spectral characterization of the LANDSAT Thematic Mapper sensors. Int J Remote Sens 6(5):697–716.  https://doi.org/10.1080/01431168508948492 Google Scholar
  53. Mather PM (2004) Computer processing of remotely sensed images: an introduction, vol 4. Wiley, Chichester, pp 4–344. ISBN:9781280287527Google Scholar
  54. Mathew A, Khandelwal S, Kaul N (2017) Investigating spatial and seasonal variations of urban heat island effect over Jaipur city and its relationship with vegetation, urbanization and elevation parameters. Sustain Cities Soc 35:157–177.  https://doi.org/10.1016/j.scs.2017.07.013 Google Scholar
  55. Maxwell SK, Sylvester KM (2012) Identification of “ever-cropped” land (1984–2010) using Landsat annual maximum NDVI image composites: Southwestern Kansas case study. Remote Sens Env 121:186–195.  https://doi.org/10.1016/j.rse.2012.01.022 Google Scholar
  56. McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432.  https://doi.org/10.1080/01431169608948714 Google Scholar
  57. Mithun S, Chattopadhyay S, Bhatta B (2016) Analyzing urban dynamics of metropolitan Kolkata, India by using landscape metrics. Papers Appl Geogr 2(3):284–294.  https://doi.org/10.1080/23754931.2016.1148069 Google Scholar
  58. Mitra P, Shankar BU, Pal SK (2004) Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recogn Lett 25(9):1067–1074Google Scholar
  59. Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistic. Ecol Model 62(4):275–293.  https://doi.org/10.1016/0304-3800(92)90003-W Google Scholar
  60. Mukherjee J (2015) Beyond the urban: rethinking urban ecology using Kolkata as a case study. Int J Urban Sustain Dev 7(2):131–146.  https://doi.org/10.1080/19463138.2015.1011160 Google Scholar
  61. Mushore TD, Mutanga O, Odindi J, Dube T (2017) Assessing the potential of integrated Landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices in classifying urban landscapes. Geocarto Int 32(8):886–899.  https://doi.org/10.1080/10106049.2016.1188168 Google Scholar
  62. Ng CN, Xie YJ, Yu XJ (2011) Measuring the spatio-temporal variation of habitat isolation due to rapid urbanization: a case study of the Shenzhen River cross-boundary catchment, China. Landsc Urban Plan 103(1):44–54.  https://doi.org/10.1016/j.landurbplan.2011.05.011 Google Scholar
  63. Nichol JE (1994) A GIS-based approach to microclimate monitoring in Singapore’s high-rise housing estates. Photogramm Eng Remote Sens 60(10):1225–1232Google Scholar
  64. Oke TR (1987) Boundary layer climates. 2a ed. London and New York: Routledge. J Chem Inf Model.  https://doi.org/10.1017/CBO9781107415324.004 Google Scholar
  65. Otukei JR, Blaschke T (2010) Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Obs Geoinf 12(SUPPL. 1):S27–S31.  https://doi.org/10.1016/j.jag.2009.11.002 Google Scholar
  66. Owen TW, Carlson TN, Gillies RR (1998) An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int J Remote Sens 19(9):1663–1681.  https://doi.org/10.1080/014311698215171 Google Scholar
  67. Pal S, Ziaul S (2017) Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt J Remote Sens Space Sci 20(1):125–145.  https://doi.org/10.1016/j.ejrs.2016.11.003 Google Scholar
  68. Popa P, Timofti M, Voiculescu M, Dragan S, Trif C, Georgescu LP (2012) Study of physico-chemical characteristics of wastewater in an urban agglomeration in Romania. Sci World J. doi. https://doi.org/10.1100/2012/549028 Google Scholar
  69. Punia M, Singh L (2012) Entropy approach for assessment of urban growth: a case study of Jaipur, India. J Indian Soc Remote Sens 40(2):231–244.  https://doi.org/10.1007/s12524-011-0141-z Google Scholar
  70. Qin Z, Karnieli A, Berliner P (2001) A mono-window algorithm for retrieving land surface temperature from Landsat TM. Int J Remote Sens 22(18):3719–3746.  https://doi.org/10.1080/01431160010006971 Google Scholar
  71. Rahman A, Aggarwal SP, Netzband M, Fazal S (2011) Monitoring urban sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. IEEE J Select Top Appl Earth Obs Remote Sens 4(1):56–64.  https://doi.org/10.1109/jstars.2010.2084072 Google Scholar
  72. Ramachandra TV, Aithal BH, Sowmyashree MV (2014) Urban structure in Kolkata: metrics and modelling through geo-informatics. Appl Geomat 6(4):229–244.  https://doi.org/10.1007/s12518-014-0135-y Google Scholar
  73. Ranagalage M, Estoque RC, Zhang X, Murayama Y (2018a) Spatial changes of urban heat island formation in the Colombo District, Sri Lanka: implications for sustainability planning. Sustain (Switz).  https://doi.org/10.3390/su10051367 Google Scholar
  74. Ranagalage M, Dissanayake DMSLB, Murayama Y, Zhang X, Estoque R, Perera ENC, Morimoto T (2018b) Quantifying surface urban heat island formation in the world heritage tropical mountain city of Sri Lanka. ISPRS Int J Geo Inf 7(9):341Google Scholar
  75. Ranagalage M, Estoque R, Handayani H, Zhang X, Morimoto T, Tadono T, Murayama Y (2018c) Relation between urban volume and land surface temperature: a comparative study of planned and traditional cities in Japan. Sustainability. 10(7):2366.  https://doi.org/10.3390/su10072366 Google Scholar
  76. Raynolds MK, Comiso JC, Walker DA, Verbyla D (2008) Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sens Environ 112(4):1884–1894.  https://doi.org/10.1016/j.rse.2007.09.008 Google Scholar
  77. Ren W, Zhong Y, Meligrana J, Anderson B, Watt WE, Chen J, Leung HL (2003) Urbanization, land use, and water quality in Shanghai 1947–1996. Environ Int 29(5):649–659.  https://doi.org/10.1016/S0160-4120(03)00051-5 Google Scholar
  78. Sahana M, Hong H, Sajjad H (2018) Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: a study on Kolkata urban agglomeration, India. Sci Total Environ 628629:1557–1566.  https://doi.org/10.1016/j.scitotenv.2018.02.170 Google Scholar
  79. Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Env 79(2–3):213–224.  https://doi.org/10.1016/S0034-257(01)00274-7 Google Scholar
  80. Sannigrahi S, Bhatt S, Rahmat S, Uniyal B, Banerjee S, Chakraborti S, Bhatt A (2017) Analyzing the role of biophysical compositions in minimizing urban land surface temperature and urban heating. Urban Clim.  https://doi.org/10.1016/j.uclim.2017.10.002 Google Scholar
  81. Santos dos AR, de Oliveira FS, da Silva AG, Gleriani JM, Gonçalves W, Moreira GL, Mota PHS (2017) Spatial and temporal distribution of urban heat islands. Sci Total Env 605–606:946–956Google Scholar
  82. Scolozzi R, Geneletti D (2012) A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Env Impact Assess Rev 36:9–22.  https://doi.org/10.1016/j.eiar.2012.03.001 Google Scholar
  83. Sharma R, Ghosh A, Joshi PK (2013) Analysingspatio-temporal footprints of urbanization on environment of Surat city using satellite-derived bio-physical parameters. Geocarto Int 28(5):420–438.  https://doi.org/10.1080/10106049.2012.715208 Google Scholar
  84. Sharma R, Chakraborty A, Joshi PK (2015) Geospatial quantification and analysis of environmental changes in urbanizing city of Kolkata (India). Environ Monit Assess 187(1):4206.  https://doi.org/10.1007/s10661-014-4206-7 Google Scholar
  85. Shi Y, Katzschner L, Ng E (2018) Modelling the fine-scale spatiotemporal pattern of urban heat island effect using land use regression approach in a megacity. Sci Total Environ 618:891–904.  https://doi.org/10.1016/j.scitotenv.2017.08.252 Google Scholar
  86. Shifaw E, Sha J, Li X, Bao Z, Ji J, Chen B (2018) Spatiotemporal analysis of vegetation cover (1984–2017) and modelling of its change drivers, the case of Pingtan Island, China. Model Earth Syst Env.  https://doi.org/10.1007/s40808-018-0473-6 Google Scholar
  87. Shiflett SA, Liang LL, Crum SM, Feyisa GL, Wang J, Jenerette GD (2017) Variation in the urban vegetation, surface temperature, air temperature nexus. Sci Total Env 579:495–505.  https://doi.org/10.1016/j.scitotenv.2016.11.069 Google Scholar
  88. Sobrino JA, Jiménez-Muñoz JC, Paolini L (2004) Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Env 90(4):434–440.  https://doi.org/10.1016/j.rse.2004.02.003 Google Scholar
  89. Sudhira HS, Ramachandra TV, Jagadish KS (2004) Urban sprawl: metrics, dynamics and modelling using GIS. Int J Appl Earth Obs Geoinf 5(1):29–39.  https://doi.org/10.1016/j.jag.2003.08.002 Google Scholar
  90. Sun Y, Zhao S (2018) Spatiotemporal dynamics of urban expansion in 13 cities across the Jing-Jin-Ji urban agglomeration from 1978 to 2015. Ecol Ind 87:302–313.  https://doi.org/10.1016/j.ecolind.2017.12.038 Google Scholar
  91. Sun Y, Zhao S, Qu W (2015) Quantifying spatiotemporal patterns of urban expansion in three capital cities in Northeast China over the past three decades using satellite data sets. Env Earth Sci 73(11):7221–7235.  https://doi.org/10.1007/s12665-014-3901-6 Google Scholar
  92. Sun Z, Wu F, Shi C, Zhan J (2016) The impact of land use change on water balance in Zhangye city, China. Phys Chem Earth 96:64–73.  https://doi.org/10.1016/j.pce.2016.06.004 Google Scholar
  93. Townshend JRG, Justice CO (1986) Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int J Remote Sens 7(11):1435–1445.  https://doi.org/10.1080/01431168608948946 Google Scholar
  94. Tran DX, Pla F, Latorre-Carmona P, Myint SW, Caetano M, Kieu HV (2017) Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J Photogramm Remote Sens 124:119–132.  https://doi.org/10.1016/j.isprsjprs.2017.01.001 Google Scholar
  95. Trlica A, Hutyra LR, Schaaf CL, Erb A, Wang JA (2017) Albedo, land cover, and daytime surface temperature variation across an urbanized landscape. Earth’s Futur 5(11):1084–1101.  https://doi.org/10.1002/2017EF000569 Google Scholar
  96. United Nations (2014) World urbanization prospects. World urbanization prospects: the 2014 revision highlights.  https://doi.org/10.4054/DemRes.2005.12.9
  97. USGS (2015) Landsat 8 (L8)Data Users Handbook. Earth Resources Observation and Science (EROS) Center, vol 8. http://landsat.usgs.gov/documents/Landsat8DataUsersHandbook.pdf. Accessed 5 Mar 2018
  98. USGS (2016) Landsat 8 (L8) Data Users Handbook. Department of the Interior US Geological Survey. http://landsat.usgs.gov/sites/default/files/documents/LSDS-1574_L8_Data_Users_Handbook.pdf. Accessed 12 Apr 2018
  99. Van der Linden S, Janz A, Waske B, Eiden M, Hostert P (2007) Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines. J Appl Remote Sens 1(1):13543. doi. https://doi.org/10.1117/1.2813466 Google Scholar
  100. Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Env 86(3):370–384.  https://doi.org/10.1016/S0034-4257(03)00079-8 Google Scholar
  101. Wang YC, Hu BKH, Myint SW, Feng CC, Chow WTL, Passy PF (2018) Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Sci Total Env.  https://doi.org/10.1016/j.scitotenv.2018.06.209 Google Scholar
  102. Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens Env 89(4):467–483.  https://doi.org/10.1016/j.rse.2003.11.005 Google Scholar
  103. Weng QH, Lu DS, Liang BQ (2006) Urban surface biophysical descriptors and land surface temperature variations. Photogramm Eng Remote Sens 72(11):1275–1286.  https://doi.org/10.14358/PERS.72.11.1275 Google Scholar
  104. Weng Q, Liu H, Liang B, Lu D (2008) The spatial variations of urban land surface temperatures: pertinent factors, zoning effect, and seasonal variability. IEEE J Sel Top Appl Earth Obs Remote Sens 1:2.  https://doi.org/10.1109/JSTARS.2008.917869 Google Scholar
  105. Wulder M, Boots B (1998) Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic. Int J Remote Sens 19(11):2223–2231.  https://doi.org/10.1080/014311698214983 Google Scholar
  106. Xiao H, Weng Q (2007) The impact of land use and land cover changes on land surface temperature in a karst area of China. J Env Manage 85(1):245–257.  https://doi.org/10.1016/j.jenvman.2006.07.016 Google Scholar
  107. Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27(14):3025–3033.  https://doi.org/10.1080/01431160600589179 Google Scholar
  108. Xu HQ, Chen BQ (2004) Remote sensing of the urban heat island and its changes in Xiamen City of SE China. J Environ Sci (China) 16(2):276–281Google Scholar
  109. Yang L, Liu N, Dai MZ, Lu GF (2008) Calculation and analysis on the eco-environmental pressure from residents’ living consumption in the progress of rapid urbanization: a case study on Jiangyin City, Jiangsu Province, Shengtai Xuebao. Acta Ecol Sin 28:5610–5618Google Scholar
  110. Yeh AG, Li X (2001) Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogramm Eng Remote Sens 67(1):83–90Google Scholar
  111. Yue W, Xu J, Tan W, Xu L (2007) The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM + data. Int J Remote Sens 28(15):3205–3226.  https://doi.org/10.1080/01431160500306906 Google Scholar
  112. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594.  https://doi.org/10.1080/01431160304987 Google Scholar
  113. Zhang Y, Odeh IOA, Han C (2009) Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int J Appl Earth Obs Geoinf 11(4):256–264.  https://doi.org/10.1016/j.jag.2009.03.001 Google Scholar
  114. Zhang M, Zhou Y, Liu X, Lu Z (2017) Ecological landscape regulation approaches in Xilingol, Inner Mongolia: an urban ecosystem services perspective. Int J Sustain Dev World Ecol 24(5):401–407.  https://doi.org/10.1080/13504509.2016.1273263 Google Scholar
  115. Zhou Q, Robson M, Pilesjo P (1998) On the ground estimation of vegetation cover in Australian rangelands. Int J Remote Sens 19(9):1815–1820.  https://doi.org/10.1080/014311698215261 Google Scholar
  116. Zhou L, Dickinson RE, Tian Y, Fang J, Li Q, Kaufmann RK, Myneni RB (2004) Evidence for a significant urbanization effect on climate in China. Proc Natl Acad Sci 101(26):9540–9544.  https://doi.org/10.1073/pnas.0400357101 Google Scholar
  117. Zhou W, Huang G, Cadenasso ML (2011) Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc Urban Plan 102(1):54–63.  https://doi.org/10.1016/j.landurbplan.2011.03.009 Google Scholar
  118. Zhu W, Lű A, Jia S (2013) Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens Env 130:62–73.  https://doi.org/10.1016/j.rse.2012.10.034 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Geography and Environment ManagementVidyasagar UniversityMidnaporeIndia

Personalised recommendations