Evolutionary Psychological Science

, Volume 5, Issue 1, pp 1–12 | Cite as

The Ensemble Hypothesis of Human Cognitive Evolution

  • Ronald T. KelloggEmail author
  • Luke Evans
Theoretical Article


The Darwinian view is that human cognition is continuous with non-human cognition. Comparative mental abilities differ quantitatively but not qualitatively. A predominant alternative hypothesis is that language qualitatively separates human beings and other primates. The ensemble hypothesis examined here suggests that language is but one of five human capacities that produce a qualitatively unique form of cognition because of their interactions with each other. Each one taken separately has a likely precursor in non-human cognition, but taken together, their effects on cognition are not additive but interactive. The human mental ensemble proposed here includes an advanced executive attention component of working memory, a theory of mind augmenting social cognition, language, the ability to interpret information using inner speech and causal inference, and an episodic memory capable of mental time travel. Only in the evolution of Homo sapiens did these five components come together to enable non-linear changes in cognition on multiple fronts, resulting in the emergent form of cognition we experientially know and scientifically study today. Empirical evidence from behavioral studies, lesion studies, and studies involving neuroatypical populations provide tentative support for the hypothesis.


Human cognition Theory of mind Mental time travel Working memory Language Inner speech 



The authors thank Victoria Litvinova for her assistance in conducting our literature search. We also thank Thomas Wynn and another anonymous reviewer for their helpful critiques of an earlier version of this manuscript.


  1. Allen, T. A., & Fortin, N. J. (2013). The evolution of episodic memory. Proceedings of the National Academy of Science, 110, 10379–10386.CrossRefGoogle Scholar
  2. Baddeley, A. D. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology, 49A, 5–28.CrossRefGoogle Scholar
  3. Baddeley, A. D. (2012). Working memory: theories, models and controversies. Annual Review of Psychology, 63, 1–29.CrossRefGoogle Scholar
  4. Baddeley, A. D., Gathercole, S., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105, 158–173.CrossRefGoogle Scholar
  5. Baldo, J. V., Dronkers, N. F., Wilkins, D., Ludy, C., Raskin, P., & Kim, J. (2005). Is problem solving dependent on language? Brain and Language, 92, 240–250.Google Scholar
  6. Barkow, J. H., Cosmides, L., & Tooby, J. (1992). The adapted mind: Evolutionary psychology and the generation of culture. New York: Oxford University Press.Google Scholar
  7. Baron-Cohen, S. (1995). Mindblindness: An essay on autism and theory of mind. Cambridge: MIT Press.Google Scholar
  8. Bar-Yosef, O. (2002). The upper Paleolithic revolution. Annual Review of Anthropology, 31, 363–393.CrossRefGoogle Scholar
  9. Bellugi, U., Järvinen-Pasley, Doyle, T. F., Reilly, J., Reiss, A. L., & Korenberg, J. R. (2007). Affect, social behavior, and the brain in Williams syndrome. Current Directions in Psychological Science, 16, 99–104.CrossRefGoogle Scholar
  10. Boesch, C. (1993). Aspects of transmission of tool-use in wild chimpanzees. In K. R. Gibson & T. Ingold (Eds.), Tools, language, and cognition in human evolution (pp. 171–183). Cambridge: Cambridge University Press.Google Scholar
  11. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.CrossRefGoogle Scholar
  12. Caspari, I., Parkinson, S. R., LaPointe, L. L., & Katz, R. C. (1998). Working memory and aphasia. Brain and Cognition, 37, 205–223.CrossRefGoogle Scholar
  13. Chomsky, N. (1980). Rules and representations. New York: Columbia University Press.CrossRefGoogle Scholar
  14. Coolidge, F. L., & Wynn, T. (2001). Executive functions of the frontal lobes and the evolutionary ascendancy of Homo sapiens. Cambridge Archaeological Journal, 11, 255–260.CrossRefGoogle Scholar
  15. Coolidge, F. L., & Wynn, T. (2005). Working memory, its executive functions, and the emergence of modern thinking. Cambridge Archaeological Journal, 15, 5–26.CrossRefGoogle Scholar
  16. Coolidge, F. L., & Wynn, T. (2007). The working memory account of Neandertal cognition—how phonological storage may be related to recursion and pragmatics in modern speech. Journal of Human Evolution, 52, 707–710.CrossRefGoogle Scholar
  17. Coolidge, F. L., & Wynn, T. (2016). An introduction to cognitive archaeology. Current Directions in Psychological Science, 25, 386–392.CrossRefGoogle Scholar
  18. Corballis, M. C. (2012). The wandering mind: mental time travel, theory of mind, and language. Análise Social, 205, 870–893.Google Scholar
  19. Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychological Bulletin, 104, 163–191.CrossRefGoogle Scholar
  20. Cragg, L., & Nation, K. (2010). Language and the development of cognitive control. Topics in Cognitive Science, 2, 631–642.Google Scholar
  21. d’Errico, F., Henshilwood, C., Lawson, G., Vanhaeren, M., Tillier, A. M., Soressi, M., et al. (2003). Archaeological evidence for the emergence of language, symbolism, and music—an alternative multidisciplinary perspective. Journal of World Prehistory, 17, 1–70.CrossRefGoogle Scholar
  22. Darwin, C. (1905). (1871, 1st ed.). The descent of man and selection in relation to sex (2) New York: Collier.Google Scholar
  23. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.CrossRefGoogle Scholar
  24. Donald, M. (1991). Origins of the modern mind: Three stages in the evolution of culture and cognition. Cambridge: Harvard University Press.Google Scholar
  25. Emerson, M. J., & Miyake, A. (2003). The role of inner speech in task-switching: a dual-task investigation. Journal of Memory and Language, 48, 148–168.CrossRefGoogle Scholar
  26. Emery, N. J., & Clayton, N. S. (2009). Comparative social cognition. Annual Review of Psychology, 60, 87–113.CrossRefGoogle Scholar
  27. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: a latent variable approach. Journal of Experimental Psychology: General, 128, 309–331.CrossRefGoogle Scholar
  28. Fagöt, J., & de Lillo, C. (2011). A comparative study of working memory: immediate serial spatial recall in baboons (Papio papio) and humans. Neuropsychologia, 49, 3870–3880.CrossRefGoogle Scholar
  29. Fouts, R. S., Fouts, D. H., & Schoenfeld, D. (1984). Sign language conversational interactions among chimpanzees. Sign Language Studies, 42, 1–12.CrossRefGoogle Scholar
  30. Gardner, R. A., Gardner, B. T., & Van Cantfort, T. E. (Eds.). (1989). Teaching sign language to chimpanzees. Albany: State University of New York Press.Google Scholar
  31. Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain, 123, 1293–1326.CrossRefGoogle Scholar
  32. Geary, D. C. (2005). The origin of mind: Evolution of brain, cognition, and general intelligence. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  33. Goel, V., Gold, B., Kapur, S., & Houle, S. (1997). The seats of reason? An imaging study of deductive and inductive reasoning. NeuroReport, 8, 1305–1310.CrossRefGoogle Scholar
  34. Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behavior. Cambridge: Harvard University Press.Google Scholar
  35. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge: Belknap Press of Harvard University Press.Google Scholar
  36. Hare, B. (2007). From nonhuman to human mind: what changed and why? Current Directions in Psychological Science, 16, 60–64.CrossRefGoogle Scholar
  37. Hasselhorn, M., Mähler, C., & Grube, D. (2005). Theory of mind, working memory, and verbal ability in preschool children: the proposal of a relay race model of the developmental dependencies. In W. Schneider, R. Schumann-Hengsteler, & B. Sodian (Eds.), Young children’s cognitive development: Interrelationships among executive functioning, working memory, verbal ability, and theory of mind (pp. 219–237). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  38. Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: what is it, who has it, and how did it evolve? Science, 298, 1569–1579.CrossRefGoogle Scholar
  39. Hauser, M. D., Yang, C., Berwick, R. C., Tattersall, I., Ryan, M. J., Watumull, J., Chomsky, N., & Lewontin, R. C. (2014). The mystery of language evolution. Frontiers in Psychology, 5, Article 401, 1–12.Google Scholar
  40. Hoffecker, J. F., & Hoffecker, I. T. (2017). Technological complexity and the global dispersion of modern humans. Evolutionary Anthropology, 26, 285–299.CrossRefGoogle Scholar
  41. Holland, L., & Low, J. (2010). Do children with autism use inner speech and visuospatial resources for the service of executive control? Evidence from suppression in dual tasks. British Journal of Developmental Psychology, 28, 369–391.CrossRefGoogle Scholar
  42. Isbell, L. A. (2009). The fruit, the tree, and the serpent: Why we see so well. Cambridge: Harvard University Press.Google Scholar
  43. Jones, W., Bellugi, U., Lai, Z., Chiles, M., Reilly, J., Lincoln, A., & Adolphs, R. (2000). Hypersociability in Williams syndrome. Journal of Cognitive Neuroscience, 12(Supplement), 30–46.CrossRefGoogle Scholar
  44. Kellogg, R. T. (2013). The making of the mind: The neuroscience of human nature. Amherst: Prometheus Books.Google Scholar
  45. Kirkham, N. Z., Cruess, L., & Diamond, A. (2003). Helping children apply their knowledge to their behavior on a dimension-switching task. Developmental Science, 6, 449–476.Google Scholar
  46. Klein, R. G., & Edgar, B. (2002). The dawn of human culture. New York: Nevraumont Publishing Company.Google Scholar
  47. Kurczek, J., Brown-Schmidt, S., & Duff, M. (2013). Hippocampal contributions to language: evidence of referential processing deficits in amnesia. Journal of Experimental Psychology: General, 142, 1346–1354.Google Scholar
  48. Lee, C. S., & Therriault, D. J. (2013). The cognitive underpinnings of creative thought: a latent variable analysis exploring the roles of intelligence and working memory in three creative thinking processes. Intelligence, 41, 306–320.CrossRefGoogle Scholar
  49. Losh, M., Bellugi, U., Reilly, J., & Anderson, D. (2000). Narrative as a social engagement tool: the excessive use of evaluation in narratives from children with Williams syndrome. Narrative Inquiry, 10, 265–290.CrossRefGoogle Scholar
  50. MacKay, D. G., James, L. E., & Hadley, C. B. (2008). Amnesic H. M.’s performance on the language competence test: parallel deficits in memory and sentence production. Journal of Clinical and Experimental Neuropsychology, 30, 280–300.CrossRefGoogle Scholar
  51. MacKay, D. G., James, L. E., Hadley, C. B., & Fogler, K. A. (2011). Speech errors of amnesic H. M.: unlike everyday slips of the tongue. Cortex, 47, 377–408.CrossRefGoogle Scholar
  52. MacKay, D. G., Johnson, W. W., Fazel, V., & James, L. E. (2013). Compensating for language deficits in amnesia I: H.M.’s spared retrieval categories. Brain Sciences, 3, 262–293.CrossRefGoogle Scholar
  53. Martin, R. C. (1987). Articulatory and phonological deficits in short-term memory and their relation to syntactic processing. Brain and Language, 32, 159–191.CrossRefGoogle Scholar
  54. McBrearty, S., & Brooks, A. S. (2002). The revolution that wasn’t: a new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.CrossRefGoogle Scholar
  55. Milner, B., Corkin, S., & Teuber, H. L. (1968). Further analysis of the hippocampal amnesic syndrome: a 14-year follow-up study of H. M. Neuropsychologia, 6, 215–234.CrossRefGoogle Scholar
  56. Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: four general conclusions. Current Directions in Psychological Science, 21, 8–14.CrossRefGoogle Scholar
  57. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41, 49–100.CrossRefGoogle Scholar
  58. Miyake, A., Emerson, M. J., Padilla, F., & Ahn, J. C. (2004). Inner speech as a retrieval aid for task goals: the effects of cue type and articulatory suppression in the random task cuing paradigm. Acta Psychologica, 115, 123–142.CrossRefGoogle Scholar
  59. Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and beyond: the hippocampus and neocortex in transformation. Annual Review of Psychology, 67, 105–134.CrossRefGoogle Scholar
  60. Nashida, T., & Hiraiwa, M. (1982). Natural history of a tool-using behavior by wild chimpanzees feeding on wood-boring ants. Journal of Human Evolution, 11, 73–99.CrossRefGoogle Scholar
  61. Newton, M. A., & Villiers, J. G. (2007). Thinking while talking: adults fail nonverbal false-belief reasoning. Psychological Science, 18, 574–579.Google Scholar
  62. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46–49.CrossRefGoogle Scholar
  63. Paivio, A. (1991). Dual coding theory: retrospect and current status. Canadian Journal of Psychology, 115, 123–142.Google Scholar
  64. Pinker, S. (2010). The cognitive niche: coevolution of intelligence, sociality, and language. PNAS, 107, 8893–8999.Google Scholar
  65. Pinker, S., & Jackendoff, R. (2005). The faculty of language: what’s special about it? Cognition, 95, 201–236.CrossRefGoogle Scholar
  66. Read, D. W. (2008). Working memory: a cognitive limit to non-human primate recursive thinking prior to hominid evolution. Evolutionary Psychology, 6, 676–714.CrossRefGoogle Scholar
  67. Reverberi, C., Shallice, T., D’Agnostini, S., Skrap, M., & Bonatti, L. L. (2009). Cortical bases of deductive reasoning: inference, memory, and metadeduction. Neuropsychologia, 47, 1107–1116.CrossRefGoogle Scholar
  68. Roberts, W. A. (2002). Are animals stuck in time? Psychological Bulletin, 128, 473–489.CrossRefGoogle Scholar
  69. Rogalsky, C., Matchin, W., & Hickok, G. (2008). Broca’s area, sentence comprehension, and working memory: an fMRI study. Frontiers in Human Neuroscience, 2, Article 14, 1-13.Google Scholar
  70. Roser, M. E., & Gazzaniga, M. S. (2004). Automatic brains—interpretive minds. Current Directions in Psychological Science, 13, 56–59.CrossRefGoogle Scholar
  71. Roser, M. E., Fugelsan, J. A., Dunbar, K. N., Corballis, P. M., & Gazzaniga, M. S. (2005). Dissociating processes supporting causal perception and causal inference in the brain. Neuropsychology, 19, 591–602.CrossRefGoogle Scholar
  72. Savage-Rumbaugh, E. S., & Rumbaugh, D. M. (1993). The emergence of language. In K. R. Gibson & T. Ingold (Eds.), Tools, language, and cognition in human evolution (pp. 86–108). Cambridge: Cambridge University Press.Google Scholar
  73. Springer, S. P., & Deutsch, G. (1998). Left brain right brain: Perspectives from cognitive neuroscience (5th ed.). New York: W. H. Freeman and Company.Google Scholar
  74. Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: what is mental time travel and is it unique to humans? Behavioral and Brain Sciences, 30, 299–313.Google Scholar
  75. Terrace, H. S., & Metcalfe, J. (Eds.). (2005). The missing link in cognition. Oxford: Oxford University Press.Google Scholar
  76. Tomasello, M. (1999). The cultural origins of human cognition. Cambridge: Harvard University Press.Google Scholar
  77. Tomasello, M. & Herrmann, E. (2010). Ape and human cognition. What's the difference? Current Directions in Psychological Science, 19, 3–8.Google Scholar
  78. Trask, L., Tobias, P. V., Wynn, T., Davidson, I., Noble, W., & Mellars, P. (1998). The origins of speech. Cambridge Archaeological Journal, 8, 69–94.CrossRefGoogle Scholar
  79. Tulving, E. (2002). Episodic memory: from mind to brain. Annual Review of Psychology, 53, 1–25.CrossRefGoogle Scholar
  80. Urbanski, M., Bréchemier, M. L., Garcin, B., Bendetowicz, D., de Schotten, M. T., et al. (2016). Reasoning by analogy requires the left frontal pole: lesion mapping and clinical implications. Brain, 139, 1783–1799.CrossRefGoogle Scholar
  81. Vallar, G., & Baddeley, A. D. (1984). Phonological short term store: phonological processing and sentence comprehension: a neuropsychological case study. Cognitive Neuropsychology, 1, 121–141.CrossRefGoogle Scholar
  82. Vygotsky, L. (1962). Thought and language (E. Hanfmann & G. Vakar, Trans.) Cambridge: MIT Press.Google Scholar
  83. Wadley, L. (2013). Recognizing complex cognition through innovative technology in Stone Age and Paleolithic sites. Cambridge Archaeological Journal, 23, 163–183.CrossRefGoogle Scholar
  84. Whitehouse, A. J., Mayberry, M. T., & Durkin, K. (2006). Inner speech impairments in autism. Journal of Child Psychology and Psychiatry, 47, 857–865.Google Scholar
  85. Wolford, G., Miller, M. B., & Gazzaniga, M. (2000). The left hemisphere’s role in hypothesis formation. Journal of Neuroscience, 20(6), RC64 1–4.CrossRefGoogle Scholar
  86. Wynn, T., & Coolidge, F. L. (2011). The implications of the working memory model for the evolution of modern cognition. International Journal of Evolutionary Biology
  87. Zelazo, P. D., Frye, D., & Rapus, T. (1996). An age-related dissociation between knowing rules and using them. Cognitive Development, 11, 37–63.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychology, Morrissey HallSaint Louis UniversitySt. LouisUSA

Personalised recommendations