Advertisement

Experimental Techniques

, Volume 44, Issue 1, pp 19–36 | Cite as

Effects of Spray Cooling Process Parameters on Machining Performance AISI 316 Steel: a Novel Experimental Technique

  • M. Ukamanal
  • P.C. MishraEmail author
  • A.K. Sahoo
Article
  • 74 Downloads

Abstract

Machining performance of AISI 316 stainless steel turning under dry and spray impingement cooling environments was investigated. The input parameters such as depth of cut, feed rate, cutting speed, water pressure and air pressure were considered for the spray assisted turning with uncoated carbide inserts. All the experiments were carried out using Taguchi based L16 orthogonal array of the design of experiments. Cutting tool temperature, chip temperature, surface roughness and tool flank wear were the measured machining performance responses. The machining performance responses were simultaneously optimized using Taguchi based Weighted Principal Component Analysis approach. The optimal combination of the machining parameters under spray impingement cooling was found to be 0.2 mm depth of cut, 0.04 mm/rev of feed rate, 66 m/min of cutting speed, 3.5 bar of water pressure and 1.5 bar of air pressure. The optimized result was verified through confirmatory experiments and an improvement in the SN ratio of 18.1540 dB for Combined Quality Loss (CQL) was obtained. Machining under spray impingement cooling environment was most effective in turning AISI 316 steel in comparison with dry machining since reduction in chip temperatures were found out to be greater than 300%.

Keywords

AISI 316 steel Turning Taguchi Spray impingement cooling Temperature Weighted principal component analysis 

Notes

References

  1. 1.
    Kumar S, Singh D, Kalsi NS (2017) Analysis of surface roughness during machining of hardened AISI 4340 Steel using minimum quantity lubrication. Mater Today Proc 4:3627–3635.  https://doi.org/10.1016/j.matpr.2017.02.255 CrossRefGoogle Scholar
  2. 2.
    Kus A, Isik Y, Cemal Cakir M et al (2015) Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting. Sensors 15:1274–1291.  https://doi.org/10.3390/s150101274 CrossRefGoogle Scholar
  3. 3.
    Abhishek K, Datta S, Mahapatra SS (2017) Optimization of MRR, surface roughness, and maximum tool-tip temperature during machining of CFRP composites. In: Materials today: proceedings, pp 2761–2770Google Scholar
  4. 4.
    Bai B, Su HH, He LJ et al (2016) Study on the machinability characteristics of Ti2AlNb based alloy in turning with coated cemented carbide tools. Mater Sci Forum 836–837:106–111.  https://doi.org/10.4028/www.scientific.net/MSF.836-837.106 CrossRefGoogle Scholar
  5. 5.
    Kumar S, Singh D, Kalsi NS (2017) Experimental investigations of surface roughness of Inconel 718 under different machining conditions. Mater Today Proc 4:1179–1185.  https://doi.org/10.1016/j.matpr.2017.01.135 CrossRefGoogle Scholar
  6. 6.
    Arrazola PJ, Arriola I, Davies MA (2009) Analysis of the influence of tool type, coatings, and machinability on the thermal fields in orthogonal machining of AISI 4140 steels. CIRP Ann - Manuf Technol 58:85–88.  https://doi.org/10.1016/j.cirp.2009.03.085 CrossRefGoogle Scholar
  7. 7.
    Mishra PC, Das DK, Ukamanal M et al (2015) Multi-response optimization of process parameters using Taguchi method and grey relational analysis during turning AA 7075/SiC composite in dry and spray cooling environments. Int J Ind Eng Comput 6:445–456.  https://doi.org/10.5267/j.ijiec.2015.6.002 CrossRefGoogle Scholar
  8. 8.
    Nedic´ BP, Eric´ MD, Bogdan NP et al (2014) Cutting temperature measurement and material machinability. Therm Sci 18:S259–S268.  https://doi.org/10.2298/TSCI120719003N CrossRefGoogle Scholar
  9. 9.
    Kumar R, Sahoo AK, Mishra PC, Das RK (2018) Comparative study on machinability improvement in hard turning using coated and uncoated carbide inserts: part II modeling, multi-response optimization, tool life, and economic aspects. Adv Manuf 6:155–175.  https://doi.org/10.1007/s40436-018-0214-0 CrossRefGoogle Scholar
  10. 10.
    Sahu SK, Mishra PC, Orra K, Sahoo AK (2015) Performance assessment in hard turning of AISI 1015 steel under spray impingement cooling and dry environment. Proc Inst Mech Eng Part B J Eng Manuf 229:251–265.  https://doi.org/10.1177/0954405414528165 CrossRefGoogle Scholar
  11. 11.
    Sahoo AK, Mishra PC (2014) A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel. Int J Ind Eng Comput 5:407–416.  https://doi.org/10.5267/j.ijiec.2014.4.002 CrossRefGoogle Scholar
  12. 12.
    Leppert T (2012) Surface layer properties of AISI 316L steel when turning under dry and with minimum quantity lubrication conditions. Proc Inst Mech Eng Part B J Eng Manuf 226:617–631.  https://doi.org/10.1177/0954405411429894 CrossRefGoogle Scholar
  13. 13.
    Sultan AZ, Sharif S, Kurniawan D (2015) Effect of machining parameters on tool Wear and hole quality of AISI 316L stainless Steel in conventional drilling. Procedia Manuf 2:202–207.  https://doi.org/10.1016/j.promfg.2015.07.035 CrossRefGoogle Scholar
  14. 14.
    Su Y, Gong L, Li B et al (2016) Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. Int J Adv Manuf Technol 83:2083–2089.  https://doi.org/10.1007/s00170-015-7730-x CrossRefGoogle Scholar
  15. 15.
    Singh R, Dureja JS, Dogra M (2019) Performance evaluation of textured carbide tools under environment-friendly minimum quantity lubrication turning strategies. J Brazilian Soc Mech Sci Eng 41:1–13.  https://doi.org/10.1007/s40430-019-1586-1 CrossRefGoogle Scholar
  16. 16.
    Yıldırım ÇV, Kıvak T, Erzincanlı F (2019) Tool wear and surface roughness analysis in milling with ceramic tools of Waspaloy: a comparison of machining performance with different cooling methods. J Brazilian Soc Mech Sci Eng 41.  https://doi.org/10.1007/s40430-019-1582-5
  17. 17.
    Klocke F, Döbbeler B, Lung S et al (2018) Analysis of surface integrity in machining of AISI 304 stainless steel under various cooling and cutting conditions. AIP Conf Proc 1960.  https://doi.org/10.1063/1.5034911
  18. 18.
    Mia M, Gupta MK, Singh G et al (2018) An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions. J Clean Prod 187:1069–1081.  https://doi.org/10.1016/j.jclepro.2018.03.279 CrossRefGoogle Scholar
  19. 19.
    Sharma VS, Singh G, Sørby K (2015) A review on minimum quantity lubrication for machining processes. Mater Manuf Process 30:935–953.  https://doi.org/10.1080/10426914.2014.994759 CrossRefGoogle Scholar
  20. 20.
    Ji X, Li B, Zhang X, Liang SY (2014) The effects of minimum quantity lubrication (MQL) on machining force, temperature, and residual stress. Int J Precis Eng Manuf 15:2443–2451.  https://doi.org/10.1007/s12541-014-0612-6 CrossRefGoogle Scholar
  21. 21.
    Pereira O, Ayesta I, López de Lacalle LN et al (2019) Process performance and life cycle assessment of friction drilling on dual-phase steel. J Clean Prod 213:1147–1156.  https://doi.org/10.1016/j.jclepro.2018.12.250 CrossRefGoogle Scholar
  22. 22.
    Li KM, Liang SY (2007) Performance profiling of minimum quantity lubrication in machining. Int J Adv Manuf Technol 35:226–233.  https://doi.org/10.1007/s00170-006-0713-1 CrossRefGoogle Scholar
  23. 23.
    Singh H, Sharma VS, Singh S, Dogra M (2019) Nanofluids assisted environmental friendly lubricating strategies for the surface grinding of titanium alloy: Ti6Al4V-ELI. J Manuf Process 39:241–249.  https://doi.org/10.1016/j.jmapro.2019.02.004 CrossRefGoogle Scholar
  24. 24.
    Singh T, Dureja JS, Dogra M, Bhatti M (2018) Machining performance investigation of AISI 304 austenitic stainless Steel under different turning environments. Int J Automot Mech Eng 15:5837–5862.  https://doi.org/10.15282/ijame.15.4.2018.10.0447 CrossRefGoogle Scholar
  25. 25.
    de Paula MA, Ribeiro MV, Souza JVC, Kondo MY (2018) Analysis of the performance of coated carbide cutting tools in the machining of martensitic stainless steel aisi 410 in dry and mql conditions. Mater Res Express 6:016512.  https://doi.org/10.1088/2053-1591/aae28b CrossRefGoogle Scholar
  26. 26.
    Mathew NT, Laxmanan V (2018) Temperature rise in workpiece and cutting tool during drilling of titanium aluminide under sustainable environment. Mater Manuf Process 33:1765–1774.  https://doi.org/10.1080/10426914.2018.1476770 CrossRefGoogle Scholar
  27. 27.
    Sampaio MA, Rocha Machado Á, Laurindo CAH, et al (2017) Hard turning of induction hardened SAE 1045 steel with PCBN tools under dry machining and minimum quantity of lubrication (MQL). In: Procceedings of the 24th ABCM international congress of mechanical engineering. ABCMGoogle Scholar
  28. 28.
    Zubir B, Abdul Razak MZ, Abd Rahman AF, Said MS (2019) The effect of cutting fluid condition on surface roughness in turning of alloy Steel. In: Advanced structured materials. pp 297–305Google Scholar
  29. 29.
    Hoyne AC, Nath C, Kapoor SG (2015) On cutting temperature measurement during titanium machining with an atomization-based cutting fluid spray system. J Manuf Sci Eng 137:024502.  https://doi.org/10.1115/1.4028898 CrossRefGoogle Scholar
  30. 30.
    Nath C, Kapoor SG, Devor RE et al (2012) Design and evaluation of an atomization-based cutting fluid spray system in turning of titanium alloy. J Manuf Process 14:452–459.  https://doi.org/10.1016/j.jmapro.2012.09.002 CrossRefGoogle Scholar
  31. 31.
    Thirumalai R, Senthilkumaar J, Selvarani P, Ramesh S (2013) Machining characteristics of Inconel 718 under several cutting conditions based on Taguchi method. Proc Inst Mech Eng Part C J Mech Eng Sci 227:1889–1897.  https://doi.org/10.1177/0954406212466193 CrossRefGoogle Scholar
  32. 32.
    Boubekri N, Shaikh V (2015) Minimum quantity lubrication (MQL) in machining: benefits and drawbacks. J Ind Intell Inf 3:205–209.  https://doi.org/10.12720/jiii.3.3.205-209 CrossRefGoogle Scholar
  33. 33.
    Bhattacharya P, Samanta AN, Chakraborty S (2009) Spray evaporative cooling to achieve ultra fast cooling in runout table. Int J Therm Sci 48:1741–1747.  https://doi.org/10.1016/j.ijthermalsci.2009.01.015 CrossRefGoogle Scholar
  34. 34.
    Selvam RP, Lin L, Ponnappan R (2006) Direct simulation of spray cooling: effect of vapor bubble growth and liquid droplet impact on heat transfer. Int J Heat Mass Transf 49:4265–4278.  https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.009 CrossRefGoogle Scholar
  35. 35.
    Nayak SK, Mishra PC, Ukamanal M, Chaini R (2018) Experimental result on heat transfer during quenching of hot Steel plate by spray impingement. Heat Transf Eng 39:739–749.  https://doi.org/10.1080/01457632.2017.1341193 CrossRefGoogle Scholar
  36. 36.
    Wendelstorf J, Spitzer KH, Wendelstorf R (2008) Spray water cooling heat transfer at high temperatures and liquid mass fluxes. Int J Heat Mass Transf 51:4902–4910.  https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.032 CrossRefGoogle Scholar
  37. 37.
    Metals G, Global Metals (1991) Stainless steel - 316 / 316l. In: 1991. http://www.globalmetals.com.au/_pdf/Stainless_Steel/Stainless_Steel_316.pdf. Accessed 7 Feb 2018
  38. 38.
    AK Steel Corporation (2007) Product data sheet: stainless Steel 316/316L. In: AK Steel. www.aksteel.com/pdf/markets_products/stainless/austenitic/316_316l_data_sheet.pdf. Accessed 7 Jul 2017
  39. 39.
    Özbek NA, Çiçek A, Gülesin M, Özbek O (2016) Effect of cutting conditions on wear performance of cryogenically treated tungsten carbide inserts in dry turning of stainless steel. Tribol Int 94:223–233.  https://doi.org/10.1016/j.triboint.2015.08.024 CrossRefGoogle Scholar
  40. 40.
    Sharma AK, Tiwari AK, Dixit AR (2016) Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. J Clean Prod 127:1–18.  https://doi.org/10.1016/j.jclepro.2016.03.146 CrossRefGoogle Scholar
  41. 41.
    Carou D, Rubio EM, Davim JP (2015) A note on the use of the minimum quantity lubrication (MQL) system in turning. Ind Lubr Tribol 67:256–261.  https://doi.org/10.1108/ILT-07-2014-0070 CrossRefGoogle Scholar
  42. 42.
    Nayak SK, Patro JK, Dewangan S, Gangopadhyay S (2014) Multi-objective optimization of machining parameters during dry turning of AISI 304 austenitic stainless Steel using Grey relational analysis. Procedia Mater Sci 6:701–708.  https://doi.org/10.1016/j.mspro.2014.07.086 CrossRefGoogle Scholar
  43. 43.
    Marimuthu P, Chandrasekaran K (2011) Experimental study on stainless steel for optimal setting of machining parameters using Taguchi and neural network. ARPN J Eng Appl Sci 6:119–127Google Scholar
  44. 44.
    Das D, Chakraborty V, Kumar Nanda B, Chandra Routara B (2018) Turning performance of Al 7075/SiCp MMC and multi-response optimization using WPCA and Taguchi approach. Mater Today Proc 5:6030–6037.  https://doi.org/10.1016/j.matpr.2017.12.207 CrossRefGoogle Scholar
  45. 45.
    Nair A, Kumanan S (2017) Multi-performance optimization of abrasive water jet machining of Inconel 617 using WPCA. Mater Manuf Process 32:693–699.  https://doi.org/10.1080/10426914.2016.1244844 CrossRefGoogle Scholar
  46. 46.
    Suesut T, Songthai M, Nunak N (2018) Investigation of soy milk deposited on stainless steel by infrared thermography. J Hyg Eng Des 22:3–8Google Scholar
  47. 47.
    Nayak SK, Mishra PC (2019) Achieving high performance and low emission in a dual fuel operated engine with varied injection parameters and combustion chamber shapes. Energy Convers Manag 180:1–24.  https://doi.org/10.1016/j.enconman.2018.10.091 CrossRefGoogle Scholar
  48. 48.
    Danish District heating association (2018) Weblet Importer. In: Solarheatdata.Eu. http://solarheatdata.eu/. Accessed 7 Feb 2018
  49. 49.
    Sahoo P, Pratap A, Bandyopadhyay A (2017) Modeling and optimization of surface roughness and tool vibration in CNC turning of aluminum alloy using hybrid RSM-WPCA methodology. Int J Ind Eng Comput 8:385–398.  https://doi.org/10.5267/j.ijiec.2016.11.003 CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringKIIT, Deemed to be UniversityBhubaneswarIndia

Personalised recommendations