Experimental Techniques

, Volume 43, Issue 1, pp 105–115 | Cite as

Fuzzy Logic Model System for Prediction of Process Parameters by Plasma Assisted Diffusion Bonding of Dissimilar Alloys

  • K. Ananthakumar
  • S. KumaranEmail author


In this study, dissimilar materials such as commercially pure titanium and austenitic stainless steel (304 L grade) was diffusion bonded using plasma assisted sintering process. The generic approach of response surface methodology based central composite design was employed to perform the experiments. The influences of sintering parameters viz., bonding temperature (T), applied pressure (P) and holding time (t) on the quality and performance characteristics of specimens are merely non-linear in nature. Therefore, the rule-based fuzzy logic intelligent modelling was employed to predict the shear strength and interface hardness of bonded specimens. It is evident that the developed fuzzy logic model is greatly comparable with the experimental results. The result of the study shows the adequacy of the developed fuzzy logic approach for the effective prediction of the responses in diffusion bonding process.


Diffusion bonding Plasma- assisted sintering techniques Fuzzy logic Shear strength Interface hardness 


  1. 1.
    Kundu S, Sam S, Chatterjee S (2011) Interface microstructure and strength properties of Ti-6Al-4V and microduplex stainless steel diffusion bonded joints. Mater Des 32:2997–3003CrossRefGoogle Scholar
  2. 2.
    Bhola MS, Kundu S, Bhola R, Mishra B, Chatterjee S (2014) Electrochemical study of diffusion bonded joints between micro-duplex stainless steel and Ti6Al4V alloy. J Mater Sci Technol 30:163–171CrossRefGoogle Scholar
  3. 3.
    Ghosh M, Das S, Banarjee PS, Chatterjee S (2005) Variation in the reaction zone and its effects on the strength of diffusion bonded titanium-stainless steel couple. Mater Sci Eng A 390:217–226CrossRefGoogle Scholar
  4. 4.
    Kundu S, Mishra B, Olsen DL, Chatteree (2013) Interfacial reactions and strength properties of diffusion bonded joints of Ti64 alloy and 17-4PH stainless steel using nickel alloy interlayer. Mater Des 51:714–722CrossRefGoogle Scholar
  5. 5.
    Atasoy E, Kahraman N (2008) Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Mater Charact 59:1481–1490CrossRefGoogle Scholar
  6. 6.
    Zakipour S, Samavatian M, Halvaee A, Amadeh A, Khodabandeh A (2015) The effect of interlayer thickness on liquid state diffusion bonding behaviour of dissimilar stainless steel 316/Ti-6Al-4V system. Mater Lett 142:168–171CrossRefGoogle Scholar
  7. 7.
    He P, Yue X, Zhang JH (2008) Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminium alloy interlayer. Mater Sci Eng A 486:171–176CrossRefGoogle Scholar
  8. 8.
    Zhong Z, Hinoki T, Kohyama A (2010) Effect of holding time on the microstructure and strength of tungsten/ferritic steel joints diffusion bonded with a nickel interlayer. Mater Sci Eng A 518:167–173CrossRefGoogle Scholar
  9. 9.
    Joseph Fernandus M, Senthilkumar T, Balasubramanian V (2011) Developing temperature-time and pressure –time diagrams for diffusion bonding AZ80 magnesium and AA6061 aluminium alloys. Mater Des 32:1651–1656CrossRefGoogle Scholar
  10. 10.
    Rao M, Zhang L, Zhang J, Luo G, Shen Q (2017) Effect of cu interlayer on joining 93W and Mo1 alloys by plasma activated sintering. Mater Lett 201:89–92CrossRefGoogle Scholar
  11. 11.
    Patel M, Singh V, Singh S, Prasad BVV (2018) Microstructural evolution during diffusion bonding of C-SiC/C-SiC composite using Ti interlayer. Mater Charact 135:71–75CrossRefGoogle Scholar
  12. 12.
    Miriyev A, Stern A, Tuval E, Kalabukhov S, Hooper Z, Frage N (2013) Titanium to steel joining by spark plasma sintering (SPS) technology. J Mater Process Technol 213:161–166CrossRefGoogle Scholar
  13. 13.
    Yang J, Trapp J, Guo Q, Kieback B (2013) Joining of 316L stainless steel by using spark plasma sintering method. Mater Des 52:179–189CrossRefGoogle Scholar
  14. 14.
    Okuni T, Miyamoto Y, Abe H, Naito M (2014) Joining of AlN and graphite disks using interlayer tapes by spark plasma sintering. Mater Des 54:755–759CrossRefGoogle Scholar
  15. 15.
    Liu L, Ye F, Zhou Y, Zhang Z, Hou Q (2010) Fast bonding α-SiAlON ceramics by spark plasma sintering. J Eur Ceram Soc 30:2683–2689CrossRefGoogle Scholar
  16. 16.
    Grasso S, Tatarko P, Rizzo S, Porwal H, Hu C, Katoh Y, Salvo M, Reece JM, Ferraris M (2014) Joining of β-SiC by spark plasma sintering. J Eur Ceram Soc 34:1681–1686CrossRefGoogle Scholar
  17. 17.
    Aroshas R, Rosenthal I, Stern A, Shmul Z, Kalabukhov S, Frage N (2015) Silicon carbide diffusion bonding by spark plasma sintering, mater. Manuf. Processes 30:122–126Google Scholar
  18. 18.
    Gopalakannan S, Senthilvelan T (2013) EDM of cast Al/SiC metal matrix nanocomposites by applying response surface method. Int J Adv Manuf Technol 67:485–493CrossRefGoogle Scholar
  19. 19.
    Rajakumar S, Balasubramanian V (2016) Diffusion bonding of titanium and AA7075 aluminium alloy dissimilar joints-process modeling and optimization using desirability approach. Int J Adv Manuf Technol 86:1095-1112CrossRefGoogle Scholar
  20. 20.
    Joseph Fernandus M, Senthilkumar T, Balasubramanian V, Rajakumar S (2014) Optimizing diffusion bonding parameters to maximize the strength of AA6061 aluminium and AZ61A magnesium alloy joints. Exp Tech 38:21–36CrossRefGoogle Scholar
  21. 21.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353CrossRefGoogle Scholar
  22. 22.
    Latha B, Senthilkumar VS (2010) Modeling and Analysis of Surface Roughness Parameters in Drilling GFRP Composites using Fuzzy Logic. Mater Manuf Process 25:817–827CrossRefGoogle Scholar
  23. 23.
    Aghakhani M, Ghaderi RM, Karami A, Derakhshan AA (2014) Combined effect of TiO2 nanoparticles and input welding parameters on the weld bead penetration in submerged arc welding process using fuzzy logic. Int J Adv Manuf Technol 70:63–72CrossRefGoogle Scholar
  24. 24.
    Latha B, Senthilkumar VS (2009) Analysis of Thrust Force in Drilling Glass Fiber-Reinforced Plastic Composites Using Fuzzy Logic. Mater Manuf Process 24:509–516CrossRefGoogle Scholar
  25. 25.
    Tajdari A, Mehraban G, Khoogar AR (2010) Shear strength prediction of Ni–Ti alloys manufactured by powder metallurgy using fuzzy rule-based model. Mater. Des 31:1180–1185Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc 2018

Authors and Affiliations

  1. 1.Green Energy Materials and Manufacturing Research Group, Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations