Advertisement

Non-apoptotic Roles of Caspases in Stem Cell Biology, Carcinogenesis, and Radiotherapy

  • Rayan Kaakati
  • Ruya Zhao
  • Xuhui Bao
  • Andrew K. Lee
  • Xinjian Liu
  • Fang Li
  • Chuan-Yuan LiEmail author
Radiation Biology and Stem Cells (CD Porada and PF Wilson Jr, Section Editors)
  • 2 Downloads
Part of the following topical collections:
  1. Topical Collection on Radiation Biology and Stem Cells

Abstract

Purpose of Review

To summarize recent findings on novel roles of caspases in stem cell biology, tumor repopulation, and tissue regeneration. Contrary to the long-held notion that apoptotic caspases are exclusively executioners of programmed cell death, an abundance of evidence is emerging that activation of caspases does not inevitably lead to cell death.

Recent Findings

It is now known that sublethal activation of caspases occurs in development, stem cell differentiation, epigenetic reprogramming, and a whole host of other key biological processes. Important for cancer biology, recent studies show that activation of caspases in tumors facilitates carcinogenesis, metastasis, and tumor relapse after cancer treatment. We have found that apoptotic cells secrete prostaglandins to stimulate proliferation of neighboring cells. This pathway functions to regenerate tissues and stem cells in multiple organisms, but it also poses problems in emerging tumor resistance to chemotherapy and radiotherapy.

Summary

Novel findings on caspases are contrary to established paradigms and might explain why cancer therapies aimed at activating apoptotic caspases have not been very successful in the clinic. In this brief review, we summarize some novel findings regarding caspases with the hope of stimulating more interest in this nascent but increasingly important research area. Better understanding of the diverse roles of caspases may one day help us establish novel approaches for treating cancer.

Keywords

Stem cell Ionizing radiation Apoptotic caspases Cancer stem cell Carcinogenesis Epigenetic reprogramming 

Notes

Funding Information

Work in our laboratory is supported by grants CA208852, CA216876, and ES024015 from the US National Institutes of Health.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Data described in this study is approved by the Duke University Institutional Animal Care and Use Committee.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5(4):a008656.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 1999;274(17):11549–56.PubMedCrossRefGoogle Scholar
  3. 3.
    Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet. 1999;33:29–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 2003;10(1):26–35.PubMedCrossRefGoogle Scholar
  5. 5.
    Zakeri Z, Penaloza CG, Smith K, Ye Y, Lockshin RA. What cell death does in development. Int J Dev Biol. 2015;59(1–3):11–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Dyche WJ. A comparative study of the differentiation and involution of the Mullerian duct and Wolffian duct in the male and female fetal mouse. J Morphol. 1979;162(2):175–209.PubMedCrossRefGoogle Scholar
  7. 7.
    Zuzarte-Luis V, Hurle JM. Programmed cell death in the developing limb. Int J Dev Biol. 2002;46(7):871–6.PubMedGoogle Scholar
  8. 8.
    Iversen OH. Cell death in vivo: terminal maturation, necrosis and apoptosis. East Afr Med J. 1996;73(5 Suppl):S5–6.PubMedGoogle Scholar
  9. 9.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefGoogle Scholar
  10. 10.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386(6625):623–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Taghiyev AF, Rokhlin OW, Glover RB. Caspase-2-based regulation of the androgen receptor and cell cycle in the prostate cancer cell line LNCaP. Genes Cancer. 2011;2(7):745–52.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    King D, Pringle JH, Hutchinson M, Cohen GM. Processing/activation of caspases, -3 and -7 and -8 but not caspase-2, in the induction of apoptosis in B-chronic lymphocytic leukemia cells. Leukemia. 1998;12(10):1553–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Liang G, Zhang Y. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res. 2013;23(1):49–69.PubMedCrossRefGoogle Scholar
  14. 14.
    Baena-Lopez, L.A., et al., Non-apoptotic caspase regulation of stem cell properties. Semin Cell Dev Biol. 2018;82:118-126.Google Scholar
  15. 15.
    Chagastelles PC, Nardi NB. Biology of stem cells: an overview. Kidney Int Suppl. 2011;1(3):63–7.CrossRefGoogle Scholar
  16. 16.
    Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840(8):2506–19.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kiefer JC. Primer and interviews: the dynamic stem cell niche. Dev Dyn. 2011;240(3):737–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Schmidt R, Plath K. The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation. Genome Biol. 2012;13(10):251.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Young RA. Control of the embryonic stem cell state. Cell. 2011;144(6):940–54.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Li F, He Z, Shen J, Huang Q, Li W, Liu X, et al. Apoptotic caspases regulate induction of iPSCs from human fibroblasts. Cell Stem Cell. 2010;7(4):508–20.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fujita J, Crane AM, Souza MK, Dejosez M, Kyba M, Flavell RA, et al. Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell. 2008;2(6):595–601.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bell RAV, Megeney LA. Evolution of caspase-mediated cell death and differentiation: twins separated at birth. Cell Death Differ. 2017;24(8):1359–68.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jeong J, Conboy IM. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes. Biochem Biophys Res Commun. 2011;414(1):9–13.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Marzesco AM, et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci. 2005;118(Pt 13):2849–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Hossain MS, Kurokawa K, Sekimizu K. Induction of fusion-competent myoblast-specific gene expression during myogenic differentiation of Drosophila Schneider cells by DNA double-strand breaks or replication inhibition. Biochim Biophys Acta. 2005;1743(1–2):176–86.PubMedCrossRefGoogle Scholar
  27. 27.
    Johnstone AP, Williams GT. Role of DNA breaks and ADP-ribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes. Nature. 1982;300(5890):368–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Hartley JA, Gibson NW, Zwelling LA, Yuspa SH. Association of DNA strand breaks with accelerated terminal differentiation in mouse epidermal cells exposed to tumor promoters. Cancer Res. 1985;45(10):4864–70.PubMedGoogle Scholar
  29. 29.
    Khan Z, Francis GE. Contrasting patterns of DNA strand breakage and ADP-ribosylation-dependent DNA ligation during granulocyte and monocyte differentiation. Blood. 1987;69(4):1114–9.PubMedGoogle Scholar
  30. 30.
    Gunji H, Hass R, Kufe D. Internucleosomal DNA fragmentation during phorbol ester-induced monocytic differentiation and G0/G1 arrest. J Clin Invest. 1992;89(3):954–60.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ishizaki Y, Jacobson MD, Raff MC. A role for caspases in lens fiber differentiation. J Cell Biol. 1998;140(1):153–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA. Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci U S A. 2002;99(17):11025–30.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Abdul-Ghani M, Megeney LA. Rehabilitation of a contract killer: caspase-3 directs stem cell differentiation. Cell Stem Cell. 2008;2(6):515–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Fernando P, Megeney LA. Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J. 2007;21(1):8–17.PubMedCrossRefGoogle Scholar
  35. 35.
    Fernando P, Brunette S, Megeney LA. Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J. 2005;19(12):1671–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Janzen V, Fleming HE, Riedt T, Karlsson G, Riese MJ, Lo Celso C, et al. Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3. Cell Stem Cell. 2008;2(6):584–94.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bulatovic I, Ibarra C, Österholm C, Wang H, Beltrán-Rodríguez A, Varas-Godoy M, et al. Sublethal caspase activation promotes generation of cardiomyocytes from embryonic stem cells. PLoS One. 2015;10(3):e0120176.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cardona M, López JA, Serafín A, Rongvaux A, Inserte J, García-Dorado D, et al. Executioner caspase-3 and 7 deficiency reduces myocyte number in the developing mouse heart. PLoS One. 2015;10(6):e0131411.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    • Cartwright, I.M., et al., Essential roles of caspase-3 in facilitating Myc-induced genetic instability and carcinogenesis. Elife, 2017;6:e26371.  https://doi.org/10.7554/eLife.26371. This report provides strong evience for the importance of Casp3-mediatd double strand breaks in Myc induced carcinogenesis.
  40. 40.
    • Ding, A.X., et al., CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo. Elife, 2016;5:e10936.  https://doi.org/10.7554/eLife.10936. This report elegantly demonstrate cellular surival after Casp3 activation in vivo and implicating its imporatnt roles in cellular differentiation.
  41. 41.
    Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Fulda S. Regulation of apoptosis pathways in cancer stem cells. Cancer Lett. 2013;338(1):168–73.PubMedCrossRefGoogle Scholar
  43. 43.
    Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res. 2009;19(1):103–15.PubMedCrossRefGoogle Scholar
  44. 44.
    Hernandez-Vargas H, et al. Methylome analysis reveals Jak-STAT pathway deregulation in putative breast cancer stem cells. Epigenetics. 2011;6(4):428–39.PubMedCrossRefGoogle Scholar
  45. 45.
    Karamboulas C, Ailles L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta. 2013;1830(2):2481–95.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    • Liu X, et al. Self-inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells. Cell Res. 2017;27(6):764–83. This report provides evidence for low level leakage of mitochondria, which leads to caspase activation and DNA doule strand breaks, and enhanced tumorigenicity in cancer cells. Google Scholar
  47. 47.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.PubMedGoogle Scholar
  48. 48.
    Sun M, Guo X, Qian X, Wang H, Yang C, Brinkman KL, et al. Activation of the ATM-snail pathway promotes breast cancer metastasis. J Mol Cell Biol. 2012;4(5):304–15.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Liu MJ, Chen LH, Hu KF, Yang XL, Dong JY, Liu J. Study on the effect of overexpression of miR-18a on cellular proliferation and migration by targeting ATM in human colorectal cancer cells. Sichuan Da Xue Xue Bao Yi Xue Ban. 2016;47(4):451–7.PubMedGoogle Scholar
  50. 50.
    Coppe JP, et al. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Li F, et al. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal. 2010;3(110):ra13.PubMedPubMedCentralGoogle Scholar
  52. 52.
    •• Huang Q, et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med. 2011;17(7):860–6. This report provides strong evidence for a paradoxical role for Casp3 in promoting PGE 2 production and tumor repopulation after radiotherapy. Google Scholar
  53. 53.
    Feng X, Yu Y, He S, Cheng J, Gong Y, Zhang Z, et al. Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Lett. 2017;385:12–20.PubMedCrossRefGoogle Scholar
  54. 54.
    • Kurtova AV, et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature. 2015;517(7533):209–13. This report suggests that chemotherapy of bladder induced apoptosis promotes PGE2 secretion from dying cells, which stimulates cancer stem cell activation and tumor resistance to therapy. PubMedCrossRefGoogle Scholar
  55. 55.
    Khalil H, Peltzer N, Walicki J, Yang JY, Dubuis G, Gardiol N, et al. Caspase-3 protects stressed organs against cell death. Mol Cell Biol. 2012;32(22):4523–33.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Oficjalska K, Raverdeau M, Aviello G, Wade SC, Hickey A, Sheehan KM, et al. Protective role for caspase-11 during acute experimental murine colitis. J Immunol. 2015;194(3):1252–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Bonner C, Bacon S, Concannon CG, Rizvi SR, Baquie M, Farrelly AM, et al. INS-1 cells undergoing caspase-dependent apoptosis enhance the regenerative capacity of neighboring cells. Diabetes. 2010;59(11):2799–808.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zhao R, Kaakati R, Lee AK, Liu X, Li F, Li CY. Novel roles of apoptotic caspases in tumor repopulation, epigenetic reprogramming, carcinogenesis, and beyond. Cancer Metastasis Rev. 2018;37:227–36.PubMedCrossRefGoogle Scholar
  59. 59.
    Tseng AS, Adams DS, Qiu D, Koustubhan P, Levin M. Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol. 2007;301(1):62–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, et al. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell. 2009;17(2):279–89.PubMedCrossRefGoogle Scholar
  61. 61.
    Brockes JP, Kumar A. Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol. 2008;24:525–49.PubMedCrossRefGoogle Scholar
  62. 62.
    Kang TB, Jeong JS, Yang SH, Kovalenko A, Wallach D. Caspase-8 deficiency in mouse embryos triggers chronic RIPK1-dependent activation of inflammatory genes, independently of RIPK3. Cell Death Differ. 2018;25(6):1107–17.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Geisbrecht ER, Montell DJ. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell. 2004;118(1):111–25.PubMedCrossRefGoogle Scholar
  64. 64.
    Rudrapatna VA, Bangi E, Cagan RL. Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion. EMBO Rep. 2013;14(2):172–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Oh YT, Yue P, Wang D, Tong JS, Chen ZG, Khuri FR, et al. Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling. Oncotarget. 2015;6(38):41324–38.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Torres VA, Mielgo A, Barbero S, Hsiao R, Wilkins JA, Stupack DG. Rab5 mediates caspase-8-promoted cell motility and metastasis. Mol Biol Cell. 2010;21(2):369–76.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Cheng YJ, Lee CH, Lin YP, Huang JY, Su CC, Chang WT, et al. Caspase-3 enhances lung metastasis and cell migration in a protease-independent mechanism through the ERK pathway. Int J Cancer. 2008;123(6):1278–85.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhou M, Liu X, Li Z, Huang Q, Li F, Li CY. Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells. Int J Cancer. 2018;143(4):921–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Gdynia G, Grund K, Eckert A, Bock BC, Funke B, Macher-Goeppinger S, et al. Basal caspase activity promotes migration and invasiveness in glioblastoma cells. Mol Cancer Res. 2007;5(12):1232–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Yang C, Novack DV. Anti-cancer IAP antagonists promote bone metastasis: a cautionary tale. J Bone Miner Metab. 2013;31(5):496–506.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rohn TT, Head E. Caspase activation in Alzheimer’s disease: early to rise and late to bed. Rev Neurosci. 2008;19(6):383–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Rideout HJ, Stefanis L. Caspase inhibition: a potential therapeutic strategy in neurological diseases. Histol Histopathol. 2001;16(3):895–908.Google Scholar
  73. 73.
    Sanchez Mejia RO, Friedlander RM. Caspases in Huntington's disease. Neuroscientist. 2001;7(6):480–9.Google Scholar
  74. 74.
    Kim KW, Moretti L, Lu B. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models. PLoS One. 2008;3(5):e2275.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Flanagan L, Meyer M, Fay J, Curry S, Bacon O, Duessmann H, et al. Low levels of caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: caspase-3 inhibition as a therapeutic approach. Cell Death Dis. 2016;7:e2087.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rayan Kaakati
    • 1
  • Ruya Zhao
    • 1
  • Xuhui Bao
    • 2
  • Andrew K. Lee
    • 2
    • 3
  • Xinjian Liu
    • 2
  • Fang Li
    • 2
  • Chuan-Yuan Li
    • 2
    • 3
    Email author
  1. 1.Duke University School of MedicineDurhamUSA
  2. 2.Department of DermatologyDuke University Medical CenterDurhamUSA
  3. 3.Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamUSA

Personalised recommendations