Advertisement

Role of the Extracellular Matrix in Stem Cell Maintenance

  • Ana Pardo-Saganta
  • Isabel A. Calvo
  • Borja SaezEmail author
  • Felipe ProsperEmail author
Cell:Cell Interactions in Stem Cell Maintenance (D Bonnet, Section Editor)
  • 39 Downloads
Part of the following topical collections:
  1. Topical Collection on Cell:Cell Interactions in Stem Cell Maintenance

Abstract

Purpose of Review

Stem cells reside in specialized anatomical locations called niches where supportive stromal cells and the extracellular matrix (ECM) regulate their self-renewal and differentiation. This review explores the critical roles of the ECM in stem cell maintenance in tissue homeostasis, aging, and disease.

Recent Findings

It is well established that ECM proteins and their biomechanical properties control stem cell fate. In addition to specific molecular interactions, the ECM composition determines the topology and stiffness of the substrate, which also regulate stem cell behavior. Changes in the ECM during aging and disease can impair cell-ECM interactions and ultimately contribute to aging and disease pathogenesis.

Summary

A deeper understanding of the mechanisms by which the ECM regulates stem cell behavior in health, as well as during aging and in disease states, will facilitate the development of therapeutic strategies. These therapies should focus on recovering normal matrix synthesis and deposition aiming at promoting endogenous repair.

Keywords

Extracellular matrix Adult stem cells Stem cell niche Biomechanics Tissue engineering Organoids 

Notes

Acknowledgements

Due to space limitations, a great body of literature has not been cited in this work; we apologize to our colleagues for the omission of their contribution.

Funding Information

This work has been partially funded by grants from ISCIII PI17/01346 and RD16/0011/0005, MINECO RYC-2015-18580 and SAF2017-89908-R, Gobierno de Navarra GNS80/2016, AECC, and AEFAT.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. 2014;32(8):795–803.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    •• Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–9 One of the most important reports defining the stem cell niche in mammals. PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    •• Scadden DT. Nice neighborhood: emerging concepts of the stem cell niche. Cell. 2014;157(1):41–50 Updated revision including novel concepts that were demonstrated to have a critical contribution to the stem cell niche. PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Saez B, Yusuf RZ, Scadden DT. Harnessing the biology of stem cells’ niche. 1st ed. In: Vishwakarma A, and Karp JM, editors. Biology and Engineering of Stem Cell Niches. Amsterdam: Elsevier; 2017.Google Scholar
  5. 5.
    •• Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840(8):2506–19 Overview of the ECM as part of the stem cell niche affecting stem cell behavior. PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Meran L, Baulies A, Li VSW. Intestinal stem cell niche: the extracellular matrix and cellular components. Stem Cells Int. 2017;2017:7970385.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 2002;21(15):3919–26.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12):1243–53.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(12).  https://doi.org/10.1101/cshperspect.a005058.
  11. 11.
    •• Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8(3):221–33 Highlights the different functions of ECM in development, stem cell biology, and disease. PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    •• Streuli C. Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol. 1999;11(5):634–40 Shows the influence of an altered ECM on cancer progression. PubMedCrossRefGoogle Scholar
  13. 13.
    Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786–801.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mecham RP. Overview of extracellular matrix. Curr Protoc Cell Biol. 2012;Chapter 10:Unit 10 1.  https://doi.org/10.1002/0471143030.cb1001s57.
  15. 15.
    Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hall PA, Watt FM. Stem cells: the generation and maintenance of cellular diversity. Development. 1989;106(4):619–33.PubMedGoogle Scholar
  17. 17.
    •• Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324(5935):1673–7 Illustrates the coordinated interactions of the different factors influencing stem cell fate. PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Pera MF, Tam PP. Extrinsic regulation of pluripotent stem cells. Nature. 2010;465(7299):713–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Nakayama KH, Lee CC, Batchelder CA, Tarantal AF. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS One. 2013;8(5):e64134.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Watt FM, Fujiwara H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol. 2011;3(4).  https://doi.org/10.1101/cshperspect.a005124.
  21. 21.
    Mao Y, Hoffman T, Wu A, Goyal R, Kohn J. Cell type-specific extracellular matrix guided the differentiation of human mesenchymal stem cells in 3D polymeric scaffolds. J Mater Sci Mater Med. 2017;28(7):100.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.PubMedCrossRefGoogle Scholar
  23. 23.
    Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339(1):269–80.PubMedCrossRefGoogle Scholar
  24. 24.
    • Sun Z, Guo SS, Fassler R. Integrin-mediated mechanotransduction. J Cell Biol. 2016;215(4):445–56 Explains the role of integrins as part of the mechanosensing machinery. PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    • Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol. 2012;24(5):645–51 Illustrates the integration of ECM and other components of the stem cell niche. PubMedCrossRefGoogle Scholar
  26. 26.
    O’Reilly AM, Lee HH, Simon MA. Integrins control the positioning and proliferation of follicle stem cells in the Drosophila ovary. J Cell Biol. 2008;182(4):801–15.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kanatsu-Shinohara M, Takehashi M, Takashima S, Lee J, Morimoto H, Chuma S, et al. Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin. Cell Stem Cell. 2008;3(5):533–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell. 2008;3(3):289–300.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kazanis I, Belhadi A, Faissner A, Ffrench-Constant C. The adult mouse subependymal zone regenerates efficiently in the absence of tenascin-C. J Neurosci. 2007;27(51):13991–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Nakamura-Ishizu A, Okuno Y, Omatsu Y, Okabe K, Morimoto J, Uede T, et al. Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood. 2012;119(23):5429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Potocnik AJ, Brakebusch C, Fassler R. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity. 2000;12(6):653–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Qian H, Tryggvason K, Jacobsen SE, Ekblom M. Contribution of alpha6 integrins to hematopoietic stem and progenitor cell homing to bone marrow and collaboration with alpha4 integrins. Blood. 2006;107(9):3503–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Grassinger J, Haylock DN, Storan MJ, Haines GO, Williams B, Whitty GA, et al. Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with alpha9beta1 and alpha4beta1 integrins. Blood. 2009;114(1):49–59.PubMedCrossRefGoogle Scholar
  34. 34.
    Schreiber TD, Steinl C, Essl M, Abele H, Geiger K, Muller CA, et al. The integrin alpha9beta1 on hematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation. Haematologica. 2009;94(11):1493–501.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    •• Saez B, Ferraro F, Yusuf RZ, Cook CM, Yu VW, Pardo-Saganta A, et al. Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning. Blood. 2014;124(19):2937–47 Shows the importance of the modulation of the niche for the maintenance of stem cells and its clinical relevance. PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1(6):685–97.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang Z, Li G, Tse W, Bunting KD. Conditional deletion of STAT5 in adult mouse hematopoietic stem cells causes loss of quiescence and permits efficient nonablative stem cell replacement. Blood. 2009;113(20):4856–65.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Umemoto T, Yamato M, Ishihara J, Shiratsuchi Y, Utsumi M, Morita Y, et al. Integrin-alphavbeta3 regulates thrombopoietin-mediated maintenance of hematopoietic stem cells. Blood. 2012;119(1):83–94.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fujiwara H, Ferreira M, Donati G, Marciano DK, Linton JM, Sato Y, et al. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell. 2011;144(4):577–89.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell. 2008;2(1):22–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Boppart MD, Burkin DJ, Kaufman SJ. Alpha7beta1-integrin regulates mechanotransduction and prevents skeletal muscle injury. Am J Physiol Cell Physiol. 2006;290(6):C1660–5.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Raymond K, Deugnier MA, Faraldo MM, Glukhova MA. Adhesion within the stem cell niches. Curr Opin Cell Biol. 2009;21(5):623–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Marthiens V, Kazanis I, Moss L, Long K, Ffrench-Constant C. Adhesion molecules in the stem cell niche--more than just staying in shape? J Cell Sci. 2010;123(Pt 10):1613–22.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Suh HN, Han HJ. Collagen I regulates the self-renewal of mouse embryonic stem cells through alpha2beta1 integrin- and DDR1-dependent Bmi-1. J Cell Physiol. 2011;226(12):3422–32.PubMedCrossRefGoogle Scholar
  45. 45.
    •• Chen S, Lewallen M, Xie T. Adhesion in the stem cell niche: biological roles and regulation. Development. 2013;140(2):255–65 Focuses on the crucial role of the adhesion of stem cells to their niche in the regulation of stem cell self-renewal. PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Campos LS, Decker L, Taylor V, Skarnes W. Notch, epidermal growth factor receptor, and beta1-integrin pathways are coordinated in neural stem cells. J Biol Chem. 2006;281(8):5300–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Brisken C, Duss S. Stem cells and the stem cell niche in the breast: an integrated hormonal and developmental perspective. Stem Cell Rev. 2007;3(2):147–56.PubMedCrossRefGoogle Scholar
  48. 48.
    Jones RG, Li X, Gray PD, Kuang J, Clayton F, Samowitz WS, et al. Conditional deletion of beta1 integrins in the intestinal epithelium causes a loss of Hedgehog expression, intestinal hyperplasia, and early postnatal lethality. J Cell Biol. 2006;175(3):505–14.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Chermnykh E, Kalabusheva E, Vorotelyak E. Extracellular matrix as a regulator of epidermal stem cell fate. Int J Mol Sci. 2018;19(4).  https://doi.org/10.3390/ijms19041003.
  50. 50.
    Mamidi A, Prawiro C, Seymour PA, de Lichtenberg KH, Jackson A, Serup P, et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature. 2018;564(7734):114–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Greco V, Guo S. Compartmentalized organization: a common and required feature of stem cell niches? Development. 2010;137(10):1586–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Lv H, Li L, Sun M, Zhang Y, Chen L, Rong Y, et al. Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem Cell Res Ther. 2015;6:103.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    • Conway A, Schaffer DV. Biophysical regulation of stem cell behavior within the niche. Stem Cell Res Ther. 2012;3(6):50 Emphasizes the relevance of biophysical aspects of the microenvironment, on the regulation of various stem cells in different tissues. PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.PubMedCrossRefGoogle Scholar
  55. 55.
    •• Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol. 2013;14(8):467–73 Shows insights into how environmental signals regulate stem cell behavior. PubMedCrossRefGoogle Scholar
  56. 56.
    Mammoto T, Ingber DE. Mechanical control of tissue and organ development. Development. 2010;137(9):1407–20.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    DuFort CC, Paszek MJ, Weaver VM. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol. 2011;12(5):308–19.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Mammoto A, Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci. 2012;125(Pt 13):3061–73.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    •• Smith LR, Cho S, Discher DE. Stem cell differentiation is regulated by extracellular matrix mechanics. Physiology (Bethesda). 2018;33(1):16–25 Highlights the involvement of ECM biomechanics on the regulation of stem cell differentiation. PubMedGoogle Scholar
  60. 60.
    Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009;10(1):21–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802–12.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;23(7):1128–39.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Monge C, DiStasio N, Rossi T, Sebastien M, Sakai H, Kalman B, et al. Quiescence of human muscle stem cells is favored by culture on natural biopolymeric films. Stem Cell Res Ther. 2017;8(1):104.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Yennek S, Burute M, Thery M, Tajbakhsh S. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells. Cell Rep. 2014;7(4):961–70.PubMedCrossRefGoogle Scholar
  66. 66.
    Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun. 2013;4:1964.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate modulus directs neural stem cell behavior. Biophys J. 2008;95(9):4426–38.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Keung AJ, de Juan-Pardo EM, Schaffer DV, Kumar S. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells. 2011;29(11):1886–97.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ribeiro AJ, Ang YS, Fu JD, Rivas RN, Mohamed TM, Higgs GC, et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci U S A. 2015;112(41):12705–10.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 2008;121(Pt 22):3794–802.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    • Wagers AJ. The stem cell niche in regenerative medicine. Cell Stem Cell. 2012;10(4):362–9 Discuss the influence of the niche on stem cells in homeostasis and disease and on the development of therapeutic strategies for tissue repair. PubMedCrossRefGoogle Scholar
  72. 72.
    Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, et al. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol. 2018;73:77–104.PubMedCrossRefGoogle Scholar
  73. 73.
    Grose R, Hutter C, Bloch W, Thorey I, Watt FM, Fassler R, et al. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development. 2002;129(9):2303–15.PubMedGoogle Scholar
  74. 74.
    Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008;9(1):11–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 2006;66(2):794–802.PubMedCrossRefGoogle Scholar
  76. 76.
    Liu D, Hornsby PJ. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 2007;67(7):3117–26.PubMedCrossRefGoogle Scholar
  77. 77.
    Sprenger CC, Drivdahl RH, Woodke LB, Eyman D, Reed MJ, Carter WG, et al. Senescence-induced alterations of laminin chain expression modulate tumorigenicity of prostate cancer cells. Neoplasia. 2008;10(12):1350–61.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zhang J, Li W, Sanders MA, Sumpio BE, Panja A, Basson MD. Regulation of the intestinal epithelial response to cyclic strain by extracellular matrix proteins. FASEB J. 2003;17(8):926–8.PubMedCrossRefGoogle Scholar
  79. 79.
    •• Kurtz A, Oh SJ. Age related changes of the extracellular matrix and stem cell maintenance. Prev Med. 2012;54(Suppl):S50–6 Overview of the impact of the ECM on stem cell maintenance, its changes during aging, and its significance for stem cell therapy. PubMedCrossRefGoogle Scholar
  80. 80.
    Korpos E, Wu C, Sorokin L. Multiple roles of the extracellular matrix in inflammation. Curr Pharm Des. 2009;15(12):1349–57.PubMedCrossRefGoogle Scholar
  81. 81.
    Sprenger CC, Plymate SR, Reed MJ. Aging-related alterations in the extracellular matrix modulate the microenvironment and influence tumor progression. Int J Cancer. 2010;127(12):2739–48.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    •• Choi HR, Cho KA, Kang HT, Lee JB, Kaeberlein M, Suh Y, et al. Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix. Aging Cell. 2011;10(1):148–57 Demonstrates that ECM profoundly influences senescence as the exposure to ECM derived from young cells is sufficient to restore aged, senescent cells to a youthful state. PubMedCrossRefGoogle Scholar
  83. 83.
    Choi JS, Kim BS, Kim JY, Kim JD, Choi YC, Yang HJ, et al. Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. J Biomed Mater Res A. 2011;97(3):292–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Carletti B, Piemonte F, Rossi F. Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases. Curr Neuropharmacol. 2011;9(2):313–7.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Spadaccio C, Chachques E, Chello M, Covino E, Chachques JC, Genovese J. Predifferentiated adult stem cells and matrices for cardiac cell therapy. Asian Cardiovasc Thorac Ann. 2010;18(1):79–87.PubMedCrossRefGoogle Scholar
  86. 86.
    Lee EX, Lam DH, Wu C, Yang J, Tham CK, Ng WH, et al. Glioma gene therapy using induced pluripotent stem cell derived neural stem cells. Mol Pharm. 2011;8(5):1515–24.PubMedCrossRefGoogle Scholar
  87. 87.
    Orlando G, Wood KJ, Stratta RJ, Yoo JJ, Atala A, Soker S. Regenerative medicine and organ transplantation: past, present, and future. Transplantation. 2011;91(12):1310–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Carver W, Goldsmith EC. Regulation of tissue fibrosis by the biomechanical environment. Biomed Res Int. 2013;2013:101979.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179(6):1311–23.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wells RG, Discher DE. Matrix elasticity, cytoskeletal tension, and TGF-beta: the insoluble and soluble meet. Sci Signal. 2008;1(10):pe13.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    El Agha E, Kramann R, Schneider RK, Li X, Seeger W, Humphreys BD, et al. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell. 2017;21(2):166–77.PubMedCrossRefGoogle Scholar
  93. 93.
    Vincent LG, Choi YS, Alonso-Latorre B, del Alamo JC, Engler AJ. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol J. 2013;8(4):472–84.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cutroneo KR, White SL, Chiu JF, Ehrlich HP. Tissue fibrosis and carcinogenesis: divergent or successive pathways dictate multiple molecular therapeutic targets for oligo decoy therapies. J Cell Biochem. 2006;97(6):1161–74.PubMedCrossRefGoogle Scholar
  95. 95.
    •• Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315(26):1650–9 Highlights the critical relevance of the stroma in tumor development. PubMedCrossRefGoogle Scholar
  96. 96.
    •• Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406 Indicates that abnormal ECM affects cancer progression not only by directly promoting cellular transformation and metastasis but also by generating a tumorigenic microenvironment. PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Saez B, Walter MJ, Graubert TA. Splicing factor gene mutations in hematologic malignancies. Blood. 2017;129(10):1260–9.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    •• Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70 Suggests that virtually all types of human cancer cells share a number of capabilities that are acquired during tumorigenesis. PubMedCrossRefGoogle Scholar
  99. 99.
    • Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11(4):M111 014647 Authors show a proteomic strategy to characterize the in vivo ECM composition of normal tissues and tumors using enrichment of protein extracts for ECM components and subsequent analysis by mass spectrometry. PubMedCrossRefGoogle Scholar
  100. 100.
    Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. elife. 2014;3:e01308.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Jovanovic J, Iqbal S, Jensen S, Mardon H, Handford P. Fibrillin-integrin interactions in health and disease. Biochem Soc Trans. 2008;36(Pt 2):257–62.PubMedCrossRefGoogle Scholar
  102. 102.
    Janes SM, Watt FM. New roles for integrins in squamous-cell carcinoma. Nat Rev Cancer. 2006;6(3):175–83.PubMedCrossRefGoogle Scholar
  103. 103.
    •• Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906 Shows evidence for the importance of not only ECM remodeling but also stiffening in cancer. They demonstrate that breast tumorigenesis is accompanied by collagen cross-linking, ECM stiffening, and increased focal adhesions. PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Patel NR, Bole M, Chen C, Hardin CC, Kho AT, Mih J, et al. Cell elasticity determines macrophage function. PLoS One. 2012;7(9):e41024.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Perri RT, Kay NE, McCarthy J, Vessella RL, Jacob HS, Furcht LT. Fibronectin enhances in vitro monocyte-macrophage-mediated tumoricidal activity. Blood. 1982;60(2):430–5.PubMedGoogle Scholar
  106. 106.
    Stahl M, Schupp J, Jager B, Schmid M, Zissel G, Muller-Quernheim J, et al. Lung collagens perpetuate pulmonary fibrosis via CD204 and M2 macrophage activation. PLoS One. 2013;8(11):e81382.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wesley RB 2nd, Meng X, Godin D, Galis ZS. Extracellular matrix modulates macrophage functions characteristic to atheroma: collagen type I enhances acquisition of resident macrophage traits by human peripheral blood monocytes in vitro. Arterioscler Thromb Vasc Biol. 1998;18(3):432–40.PubMedCrossRefGoogle Scholar
  108. 108.
    Tilghman RW, Cowan CR, Mih JD, Koryakina Y, Gioeli D, Slack-Davis JK, et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One. 2010;5(9):e12905.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Schwartz MA. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol. 2010;2(12):a005066.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Petrie RJ, Doyle AD, Yamada KM. Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol. 2009;10(8):538–49.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Poltavets V, Kochetkova M, Pitson SM, Samuel MS. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front Oncol. 2018;8:431.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    •• Bianchi-Frias D, Damodarasamy M, Hernandez SA, Gil da Costa RM, Vakar-Lopez F, Coleman IM, et al. The aged microenvironment influences the tumorigenic potential of malignant prostate epithelial cells. Mol Cancer Res. 2018.  https://doi.org/10.1158/1541-7786.MCR-18-0522. Reveals the relevance of aged ECM on tumor development.
  113. 113.
    Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3(10):589–601.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Scheller EL, Krebsbach PH, Kohn DH. Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil. 2009;36(5):368–89.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    • Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160rv12 Focuses on the last advances in the field of tissue engineering and regenerative medicine that seek to repair tissues in spite of holdups for clinical translation. PubMedCrossRefGoogle Scholar
  116. 116.
    • Peerani R, Zandstra PW. Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest. 2010;120(1):60–70 Overview of synthetic stem cell–niche engineering where the authors examine individual niche components, dynamic interactions between HSCs and the niche, different engineering techniques, and the clinically relevant strategies to manipulate the in vivo HSC niche. PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–24.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    •• Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018.  https://doi.org/10.1016/j.addr.2018.07.004. Bioprinting in regenerative medicine and the implications of this technology in drug discovery, development, and delivery systems.
  119. 119.
    Bruna A, Rueda OM, Greenwood W, Batra AS, Callari M, Batra RN, et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell. 2016;167(1):260–74.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Rios AC, Clevers H. Imaging organoids: a bright future ahead. Nat Methods. 2018;15(1):24–6.PubMedCrossRefGoogle Scholar
  121. 121.
    • Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19(11):671–87 Discusses the main organoid types, characteristics, applications and bioengineering approaches to overcome limitations of existing culture methods. PubMedCrossRefGoogle Scholar
  122. 122.
    •• Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340(6137):1190–4 Summarizes the basic and clinical applications of an epithelial mini-gut for stem cell research, disease modelling such as colorectal cancer or cystic fibrosis, and regenerative medicine. PubMedCrossRefGoogle Scholar
  123. 123.
    Donnelly H, Salmeron-Sanchez M, Dalby MJ. Designing stem cell niches for differentiation and self-renewal. J R Soc Interface. 2018;15(145).  https://doi.org/10.1098/rsif.2018.0388.
  124. 124.
    Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.PubMedCrossRefGoogle Scholar
  125. 125.
    Guyette JP, Gilpin SE, Charest JM, Tapias LF, Ren X, Ott HC. Perfusion decellularization of whole organs. Nat Protoc. 2014;9(6):1451–68.PubMedCrossRefGoogle Scholar
  126. 126.
    Flynn LE. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials. 2010;31(17):4715–24.PubMedCrossRefGoogle Scholar
  127. 127.
    Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.PubMedGoogle Scholar
  128. 128.
    Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    • Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17(8):424–32 Reviews the use of scaffolds for organ regeneration paying attention to the role of native extracellular matrix (ECM) on perfusion-decellularized tissues and showing decellularized bone as a prototype ECM graft. PubMedCrossRefGoogle Scholar
  130. 130.
    Lin P, Chan WC, Badylak SF, Bhatia SN. Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng. 2004;10(7–8):1046–53.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Kasimir MT, Weigel G, Sharma J, Rieder E, Seebacher G, Wolner E, et al. The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation. Thromb Haemost. 2005;94(3):562–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16(8):927–33.PubMedCrossRefGoogle Scholar
  133. 133.
    Citro A, Cantarelli E, Pellegrini S, Dugnani E, Piemonti L. Anti-inflammatory strategies in intrahepatic islet transplantation: a comparative study in preclinical models. Transplantation. 2018;102(2):240–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Guruswamy Damodaran R, Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J Tissue Eng Regen Med. 2018;12(5):1230–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Peloso A, Urbani L, Cravedi P, Katari R, Maghsoudlou P, Fallas ME, et al. The human pancreas as a source of protolerogenic extracellular matrix scaffold for a new-generation bioartificial endocrine pancreas. Ann Surg. 2016;264(1):169–79.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Badylak SF, Lantz GC, Coffey A, Geddes LA. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res. 1989;47(1):74–80.PubMedCrossRefGoogle Scholar
  137. 137.
    Lanteri Parcells A, Abernathie B, Datiashvili R. The use of urinary bladder matrix in the treatment of complicated open wounds. Wounds. 2014;26(7):189–96.PubMedGoogle Scholar
  138. 138.
    Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, et al. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol. 2009;20(11):2338–47.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kheir E, Stapleton T, Shaw D, Jin Z, Fisher J, Ingham E. Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. J Biomed Mater Res A. 2011;99(2):283–94.PubMedCrossRefGoogle Scholar
  140. 140.
    Ferreira MS, Jahnen-Dechent W, Labude N, Bovi M, Hieronymus T, Zenke M, et al. Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials. 2012;33(29):6987–97.PubMedCrossRefGoogle Scholar
  141. 141.
    Leisten I, Kramann R, Ventura Ferreira MS, Bovi M, Neuss S, Ziegler P, et al. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials. 2012;33(6):1736–47.PubMedCrossRefGoogle Scholar
  142. 142.
    • Torisawa YS, Spina CS, Mammoto T, Mammoto A, Weaver JC, Tat T, et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods. 2014;11(6):663–9 Describes for the first time the bone marrow-on-a-chip system that contains artificial bone and living marrow as a powerful method for tissue engineering reconstituting a functional living bone marrow in vitro with potential clinical application in oncology, hematologic diseases, and drug discovery. PubMedCrossRefGoogle Scholar
  143. 143.
    Martine LC, Holzapfel BM, McGovern JA, Wagner F, Quent VM, Hesami P, et al. Engineering a humanized bone organ model in mice to study bone metastases. Nat Protoc. 2017;12(4):639–63.PubMedCrossRefGoogle Scholar
  144. 144.
    Reinisch A, Hernandez DC, Schallmoser K, Majeti R. Generation and use of a humanized bone-marrow-ossicle niche for hematopoietic xenotransplantation into mice. Nat Protoc. 2017;12(10):2169–88.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Holzapfel BM, Hutmacher DW, Nowlan B, Barbier V, Thibaudeau L, Theodoropoulos C, et al. Tissue engineered humanized bone supports human hematopoiesis in vivo. Biomaterials. 2015;61:103–14.PubMedCrossRefGoogle Scholar
  146. 146.
    Abarrategi A, Foster K, Hamilton A, Mian SA, Passaro D, Gribben J, et al. Versatile humanized niche model enables study of normal and malignant human hematopoiesis. J Clin Invest. 2017;127(2):543–8.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Antonelli A, Noort WA, Jaques J, de Boer B, de Jong-Korlaar R, Brouwers-Vos AZ, et al. Establishing human leukemia xenograft mouse models by implanting human bone marrow-like scaffold-based niches. Blood. 2016;128(25):2949–59.PubMedCrossRefGoogle Scholar
  148. 148.
    Abarrategi A, Mian SA, Passaro D, Rouault-Pierre K, Grey W, Bonnet D. Modeling the human bone marrow niche in mice: from host bone marrow engraftment to bioengineering approaches. J Exp Med. 2018;215(3):729–43.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Fritsch K, Pigeot S, Feng X, Bourgine PE, Schroeder T, Martin I, et al. Engineered humanized bone organs maintain human hematopoiesis in vivo. Exp Hematol. 2018;61:45–51 e5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Regenerative MedicineCenter for Applied Medical ResearchPamplonaSpain
  2. 2.Hematology-Oncology DepartmentCenter for Applied Medical ResearchPamplonaSpain
  3. 3.Department of HematologyClínica Universidad de NavarraPamplonaSpain

Personalised recommendations