Advertisement

Current Stem Cell Reports

, Volume 4, Issue 3, pp 253–263 | Cite as

Gene Editing of Stem Cells to Model and Treat Disease

  • Jennifer A. Hollywood
  • David J. Sanz
  • Alan J. Davidson
  • Patrick T. Harrison
Genome Editing (SN Waddington and HC O'Neill, Section Editors)
  • 84 Downloads
Part of the following topical collections:
  1. Topical Collection on Genome Editing

Abstract

Purpose of Review

The ability to reprogramme any adult cell back into a pluripotent stem cell state coupled with the capability to precisely edit its genomic sequence has given scientists almost unlimited potential to model any genetic disease and holds great promise for regenerative medicine.

Recent Findings

The discovery of CRISPR/Cas9 coupled with continued development and modification of this system has made it possible to manipulate gene expression at both a genetic and epigenetic level exposing the true power of stem cells. The applications of this technology to model any genetic disease, screen new drugs, generate organs for donation and develop cell therapies appear limitless.

Summary

In this review, we will provide a SWOT analysis of CRISPR/Cas9 and discuss the most recent developments in induced pluripotent stem cell gene editing and the impact being made in the clinic.

Keywords

Stem cells Induced pluripotent stem cells CRISPR/Cas9 Gene editing Disease modelling Regenerative medicine 

Notes

Compliance with Ethical Standards

Conflict of Interest

Jennifer A. Hollywood, David J. Sanz, Alan J. Davidson, and Patrick T. Harrison declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 1962;10:622–40.PubMedGoogle Scholar
  2. 2.
    Gurdon J. Nuclear transplantation in Amphibia and the importance of stable nuclear changes in cellular differentiation. Q Rev Biol 38, 54–78.Google Scholar
  3. 3.
    Thompson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.CrossRefGoogle Scholar
  4. 4.
    Robertson JA. Human embryonic stem cell research: ethical and legal issues. Nat Genet. 2001;2:74–8.CrossRefGoogle Scholar
  5. 5.
    Harrison PT, Hoppe N, Martin U. Gene editing & stem cells. J Cyst Fibros. 2017;17(1):10–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Cambell KHS. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3.  https://doi.org/10.1038/385810a0.PubMedCrossRefGoogle Scholar
  7. 7.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 2011;144(3):439–52.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Boulting GL, Kiskinis E, Croft GF, Amoroso MW, Oakley DH, Wainger BJ, et al. A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol. 2011;29:279–86.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotent cells from mouse embryos. Nature. 1981;292:154–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Thomas KR, capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51(3):503–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Rouet O, Smih F, Jasin M. Introduction of double strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14(12):8096–106.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Urnov FD, Miller JC, Lee Y, Beausejour CM, et al. Highly efficient endogenous human gene correction using designed zinc finger nucleases. Nature. 2005;435:646–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Boch J, Scholze H, Landgraf A, Hahn S, Kay S, Lahaye T, et al. Breaking the code of DNA biding specificity of TAL-type III effectors. Science. 2009;326(5959):1509–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering. J Mol Biol. 2016;428(5 Pt B):963–89.PubMedCrossRefGoogle Scholar
  16. 16.
    Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325(5939):433.  https://doi.org/10.1126/science.1172447.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475(7355):217–21.  https://doi.org/10.1038/nature10177.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27(9):851–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Soldner F, Laganière J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 2011;146:318–31.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yao Y, Nashun B, Zhou T, Qin L, Qin L, Zhao S, et al. Generation of CD34 + cells from CCR5-disrupted human embryonic and induced pluripotent stem cells. Hum Gene Ther. 2012;23(2):238–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells. 2011;29(11):1717–26.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731–4.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gao Y, Guo X, Santostefano K, Wang Y, Reid T, Zeng D, et al. Genome therapy of myotonic dystrophy type 1 iPS cells for development of autologous stem cell therapy. Mol Ther. 2016;24(8):1378–87.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Dreyer A-K, Hoffmann D, Lachmann N, Ackermann M, Steinemann D, Timm B, et al. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials. 2015;69:191–200.PubMedCrossRefGoogle Scholar
  25. 25.
    Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, et al. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports. 2015;4(1):143–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue Y, et al. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. J Biol Chem. 2013;288(48):34671–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther. 2013;21(6):1151–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    • Sangamo 2017. Sangamo announces treatment of first patient in landmark phase 1/2 clinical trial evaluating in vivo genome editing for MPS II. https://investor.sangamo.com/press-releases/detail/381/sangamo-announces-treatment-of-first-patient-in-landmark. First time a patient received gene editing therapy to precisely edit the DNA of cells directly inside the body.
  29. 29.
    Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31:833–8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    McIntosh J, Lenting PJ, Rosales C, Lee D, Rabbanian S, Raj D, et al. Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood. 2013;121(17):3335–44.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ran FA, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186–91.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lee CM, Cradick TJ, Bao G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther. 2016;24(3):645–54.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun. 2017;8:14500.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF III. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods. 2012;9:805–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24:1012–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gilbert LA, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Mandegar MA, et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell. 2016;18(4):541–53.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell. 2016;18(4):541–53.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Luo Y, Xu X, An X, Sun X, Wang S, Zhu D. Targeted inhibition of the miR-199a/214 cluster by CRISPR interference augments the tumor tropism of human induced pluripotent stem cell-derived neural stem cells under hypoxic condition. Stem Cells Int. 2016;2016:1–8.CrossRefGoogle Scholar
  40. 40.
    Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12(4):326–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Guo J, Ma D, Huang R, Ming J, Ye M, Kee K, et al. An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells. Protein & cell. 2017;8(5):379–93.CrossRefGoogle Scholar
  42. 42.
    Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2014;517(7536):583–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635–46.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Xiong K, Zhou Y, Blichfeld KA, Hyttel P, Bolund L, Freude KK, et al. RNA-guided activation of pluripotency genes in human fibroblasts. Cellular Reprogramming. 2017;19(3):189–98.PubMedCrossRefGoogle Scholar
  45. 45.
    Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5):510–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget. 2016;7(29):46545–56.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, et al. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res. 2017;45(4):1703–13.PubMedCrossRefGoogle Scholar
  48. 48.
    Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016;44(12):5615–28.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167(1):233–47. e17PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    González F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV, et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. 2014;15(2):215–26.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhu Z, González F, Huangfu D. The iCRISPR platform for rapid genome editing in human pluripotent stem cells. Methods Enzymol. 2014;546:215–50.Google Scholar
  52. 52.
    Dow LE, Fisher J, O'Rourke KP, Muley A, Kastenhuber ER, Livshits G, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33(4):390–4.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Aubrey BJ, Kelly GL, Kueh AJ, Brennan MS, O’Connor L, Milla L, et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 2015;10(8):1422–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Wang G, Yang L, Grishin D, Ye LY, Hu Y, Li K, et al. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR piggyBac technologies. Nat Protoc. 2017;12:88–103.PubMedCrossRefGoogle Scholar
  55. 55.
    Zetsche B, Volz SE, Zhang F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. 2015;33(2):139–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. 2015;11(5):316–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hemphill J, et al. Optical control of CRISPR/Cas9 gene editing. J Am Chem Soc. 2015;137(17):5642–5.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jain PK, Ramanan V, Schepers AG, Dalvie NS, Panda A, Fleming HE, et al. Development of light-activated CRISPR using guide RNAs with photocleavable protectors. Angewandte Chemie (International ed in English). 2016;55(40):12440–4.CrossRefGoogle Scholar
  59. 59.
    Zhou XX, Chung HK, Lam AJ, Lin MZ. Optical control of protein activity by fluorescent protein domains. Science. 2012;338(6108):810–4.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zhou, X.X. et al., 2017. A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription. ACS Chemical Biology (2017).Google Scholar
  61. 61.
    Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–4.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kim D, Lim K, Kim ST, Yoon SH, Kim K, Ryu SM, et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. 2017;35(5):475–80.PubMedCrossRefGoogle Scholar
  63. 63.
    •• Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–71. Breakthrough for base editing; safer (as no DSB is induced), quicker, simpler (no donor) editing. Google Scholar
  64. 64.
    Yang L, Guell M, Byrne S, Yang JL, de Los Angeles A, Mali P, et al. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 2013;41:9049–61.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Li K, Wang G, Andersen T, Zhou P, Pu WT. Optimization of genome engineering approaches with the CRISPR/Cas9 system. PLoS One. 2014;9:e105779.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Costa M, Dottori M, Sourris K, Jamshidi P, Hatzistavrou T, Davis R, et al. A method for genetic modification of human embryonic stem cells using electroporation. Nat Pro- toc. 2007;2:792–6.CrossRefGoogle Scholar
  67. 67.
    Ruby KM, Zheng B. Gene targeting in a HUES line of human embryonic stem cells via electroporation. Stem Cells. 2009;27:1496–506.PubMedCrossRefGoogle Scholar
  68. 68.
    Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Byrne SM, Mail P, Church GM. Genome editing in human stem cells. Methods Enzymol. 2014;546:119–38.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hendriks WT, Warren CR, Cowan CA. Genome editing in human pluripotent stem cells: approaches, pitfalls, and solutions. Cell Stem Cell. 2016;18:53–65.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ding Q, Lee YK, Schaefer EA, Peters DT, Veres A, Kim K, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. 2013;12:238–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Peters DT, Cowan CA, Musunuru K. Genome editing in human pluripotent stem cells, StemBook. Cambridge: Massachusetts General Hospital; 2008.Google Scholar
  73. 73.
    Hendriks WT, Jiang X, Daheron L, Cowan CA. TALEN- and CRISPR/Cas9-mediated gene editing in human pluripotent stem cells using lipid-based transfection. Curr Protoc Stem Cell Biol. 2015;34:5B.3.1–5B.3.25.CrossRefGoogle Scholar
  74. 74.
    Yu X, Liang X, Xie H, Kumsr S, Ravinder N, Potter J, et al. Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol Lett. 2016;38:919–29.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ. Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum Gene Ther. 2015;26(7):425–31.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–84.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935–49.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–5.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490–5.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 2017;550:407–10.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bird AP. CpG island as gene markers in the vertebrate nucleus. Trends Genet. 1987;3:342–7.CrossRefGoogle Scholar
  83. 83.
    Antequera F, Bird A. CpG islands in DNA methylation. In: Jost JP, Saluz HP (eds.), Molecular biology and biological significance;1993: 2. 169–185.Google Scholar
  84. 84.
    Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196:261–82.PubMedCrossRefGoogle Scholar
  85. 85.
    Monk M. Changes in DNA methylation during mouse embryonic development in relation to X-chromosome activity and imprinting. Philos Trans R Soc Lond Ser B Biol Sci. 1990;326:299–312.CrossRefGoogle Scholar
  86. 86.
    Rohani L, Johnson AA, Arnold A, Stolzing A. The aging signature: a hallmark of induced pluripotent stem cells? Aging Cell. 2014;13:2–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 2011;144(3):439–52.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kyttala A. Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Rep. 2016;6:200–12.CrossRefGoogle Scholar
  89. 89.
    Newman AM, Cooper JB. Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell. 2010;7:258–62.PubMedCrossRefGoogle Scholar
  90. 90.
    Ghosh Z, Wilson KD, Wu Y, Hu S, Quertermous T, Wu JC Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. Huang S, ed PLoS ONE 2010;5(2):e8975.Google Scholar
  91. 91.
    Churko JM, Lee J, Ameen M, Gu M, Venkatasubramanian M, Diecke S, et al. Transcriptomic and epigenomic differences in human induced pluripotent stem cells generated from six reprogramming methods. Nature Biomedical Engineering. 2017;1:826–37.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK, et al. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater. 2017;16(11):1112–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Przepiorski A, Sander V, Tran T, Hollywood JA, Sorrenson B, Shih JH, et al. A simple bioreactor-based method to generate kidney organoids from pluripotent. Stem Cells Rep. 2018;11:1–15.Google Scholar
  94. 94.
    Bedada FB, Wheelwright M, Metzger JM. Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes. Biochim Biophys Acta. 2016;1863:1829–38.PubMedCrossRefGoogle Scholar
  95. 95.
    Hrvatin S, O’Donnell CW, Deng F, Millman JR, Pagliuca FW, DiIorio P, et al. Differentiated human stem cells resemble fetal, not adult, b cells. Proc Natl Acad Sci U S A. 2014;111:3038–43.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Studer L, Vera E, Cornacchia D. Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell. 2015;16:591–600.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell. 2011;8:267–80.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Dutta D, Heo I, Clevers H. Disease modelling in stem cell-derived 3D organoid systems. Trends Mol Med. 2017;23–5:393–410.CrossRefGoogle Scholar
  99. 99.
    Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modelling ZIKV exposure. Cell. 2016;165:1238–54.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481–4.PubMedCrossRefGoogle Scholar
  102. 102.
    Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142:787–99.PubMedCrossRefGoogle Scholar
  103. 103.
    Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, et al. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci U S A. 2013;110:4557–62.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sheets TP, Park CH, Park KE, Powell A, Donovan DM, Telugu BP. Somatic cell nuclear transfer followed by CRIPSR/Cas9 microinjection results in highly efficient genome editing in cloned pigs. Int J Mol Sci. 2016;17Google Scholar
  105. 105.
    Nui D, Wei H-J, Lin L, Hardy G, Wang T, Lee IH, Zhao H-Y, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science (2017).Google Scholar
  106. 106.
    Lee G, Ramirez CN, Kim H, Zeltner N, Liu B, Radu C, et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol. 2012;30:1244–8.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Mertens J, Marchetto MC, Bardy C, Gage FH. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci. 2016;17:424–37.PubMedCrossRefGoogle Scholar
  108. 108.
    Mertens J, Paquola ACM, Ku M, Hatch E, Böhnke L, Ladjevardi S, et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell. 2015;17:705–18.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Yu DX, Marchetto MC, Gage FH. Therapeutic translation of iPSCs for treating neurological disease. Cell Stem Cell. 2013;12(6):678–88.PubMedCrossRefGoogle Scholar
  110. 110.
    Gintant G, Sager PT, Stockbridge N. Evolution of strategies to improve preclinical cardiac safety testing. Nat Rev Drug Discov. 2016;15:457–71.PubMedCrossRefGoogle Scholar
  111. 111.
    Pei Y, Peng J, Sipes NS, Shockley KR, Rao MS, Tice RR, et al. Comparative neurotoxicity screening in human iPSC-derives neural stem cells, neurons and astrocytes. Brain Res. 2016;1638:57–73.PubMedCrossRefGoogle Scholar
  112. 112.
    Lu J, Einhorn S, Venkatarangan L, Miller M, Mann DA, Watkins PB, et al. Morphological and functional characterization and assessment of iPSC-derived hepatocytes for in vitro toxicity testing. Toxicol Sci. 2015;147(1):39–54.PubMedCrossRefGoogle Scholar
  113. 113.
    Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology. 2013;57(6):2458–68.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Sirenko O, Cromwell EF. Determination of hepatotoxicity in iPSC-derived hepatocytes by multiplexed high content assays. Methods Mol Biol. 2018;1683:339–54.Google Scholar
  115. 115.
    Musunuru K. Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis Model Mech. 2013;6(4):896–904.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Mandai, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jennifer A. Hollywood
    • 1
  • David J. Sanz
    • 1
    • 2
  • Alan J. Davidson
    • 1
  • Patrick T. Harrison
    • 1
    • 2
  1. 1.Department of Molecular Medicine & PathologyUniversity of AucklandAucklandNew Zealand
  2. 2.Department of PhysiologyUniversity College CorkCorkIreland

Personalised recommendations