Short Bowel Syndrome

  • Baddr A. Shakhsheer
  • Brad W. WarnerEmail author
General Surgery (E Barksdale, Section Editor)
Part of the following topical collections:
  1. Topical Collection on General Surgery


Purpose of review

Short gut syndrome is life-altering and life-threatening disease resulting most often from massive small bowel resection. Recent advances in understanding of the perturbed physiology in these patients have translated into improved care and outcomes. This paper seeks to review the advances of care in SBS patients.

Recent findings

Anatomic considerations still predominate the early care of SBS patients, including aggressive preservation of bowel and documentation of remnant bowel length and quality. Intestinal adaptation is the process by which remnant bowel changes to fit the physiologic needs of the patient. Grossly, the bowel dilates and elongates to increase intestinal weight and protein content. Architectural changes are noted, such as villus lengthening and deepening of crypts. In addition, gene expression changes occur that function to maximize nutrient uptake and fluid preservation. Management is aimed at understanding these physiologic changes and augmenting them whenever possible in an effort to gain enteral autonomy. Complication mitigation is key, including avoidance of catheter complications, bloodstream infections, cholestasis, and nutrient deficiencies.


Multidisciplinary teams working together towards intestinal rehabilitation have shown improved outcomes. Today’s practitioner needs a current understanding of the ever-evolving care of these patients in order to promote enteral autonomy, recognize complications, and counsel patients and families appropriately.


Short bowel syndrome Intestinal failure Intestinal adaptation Parenteral nutrition IFALD 


Compliance with Ethical Standards

Conflict of Interest

Dr. Brad W. Warner reports grants from the National Institutes of Health and from serves on the Data, Safety, and Monitoring Board of Shire Pharmaceuticals Inc., during the conduct of the study.

Baddr A. Shakhsheer declares that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    O'Keefe SJ, Buchman AL, Fishbein TM, Jeejeebhoy KN, Jeppesen PB, Shaffer J. Short bowel syndrome and intestinal failure: consensus definitions and overview. Clin Gastroenterol Hepatol. 2006;4(1):6–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Goulet O, Ruemmele F. Causes and management of intestinal failure in children. Gastroenterology. 2006;130(2 Suppl 1):S16–28.PubMedCrossRefGoogle Scholar
  3. 3.
    Thompson JS, Rochling FA, Weseman RA, Mercer DF. Current management of short bowel syndrome. Curr Probl Surg. 2012;49(2):52–115.PubMedCrossRefGoogle Scholar
  4. 4.
    Struijs MC, Diamond IR, de Silva N, Wales PW. Establishing norms for intestinal length in children. J Pediatr Surg. 2009;44(5):933–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Longshore SW, Wakeman D, McMellen M, Warner BW. Bowel resection induced intestinal adaptation: progress from bench to bedside. Minerva Pediatr. 2009;61(3):239–51.PubMedGoogle Scholar
  6. 6.
    McDuffie LA, Bucher BT, Erwin CR, Wakeman D, White FV, Warner BW. Intestinal adaptation after small bowel resection in human infants. J Pediatr Surg. 2011;46(6):1045–51.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Schmidt T, Pfeiffer A, Hackelsberger N, Widmer R, Meisel C, Kaess H. Effect of intestinal resection on human small bowel motility. Gut. 1996;38(6):859–63.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hofmann AF, Poley JR. Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. Gastroenterology. 1972;62(5):918–34.PubMedCrossRefGoogle Scholar
  9. 9.
    • Seiler KM, Waye SE, Kong W, Kamimoto K, Bajinting A, Goo WH, et al. Single-cell analysis reveals regional reprogramming during adaptation to massive small bowel resection in mice. Cell Mol Gastroenterol Hepatol. 2019;10;8(3):407–426. This study used single-cell RNA sequencing after massive small bowel resection in mice to evaluate changes in cell identity resulting intestinal adaptation. Enterocytes assumed more proximal (i.e., jejunal) identities and upregulated lipid metabolism and oxidative stress gene expression.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kaufman SS, Loseke CA, Lupo JV, Young RJ, Murray ND, Pinch LW, et al. Influence of bacterial overgrowth and intestinal inflammation on duration of parenteral nutrition in children with short bowel syndrome. J Pediatr. 1997;131(3):356–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Goulet O, Baglin-Gobet S, Talbotec C, Fourcade L, Colomb V, Sauvat F, et al. Outcome and long-term growth after extensive small bowel resection in the neonatal period: a survey of 87 children. Eur J Pediatr Surg. 2005;15(2):95–101.PubMedCrossRefGoogle Scholar
  12. 12.
    Goulet OJ, Revillon Y, Jan D, De Potter S, Maurage C, Lortat-Jacob S, et al. Neonatal short bowel syndrome. J Pediatr. 1991;119(1 Pt 1):18–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Dibaise JK, Young RJ, Vanderhoof JA. Enteric microbial flora, bacterial overgrowth, and short-bowel syndrome. Clin Gastroenterol Hepatol. 2006;4(1):11–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Vanderhoof JA, Young RJ, Murray N, Kaufman SS. Treatment strategies for small bowel bacterial overgrowth in short bowel syndrome. J Pediatr Gastroenterol Nutr. 1998;27(2):155–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Nordgaard I, Hansen BS, Mortensen PB. Colon as a digestive organ in patients with short bowel. Lancet. 1994;343(8894):373–6.PubMedCrossRefGoogle Scholar
  16. 16.
    DiBaise JK, Young RJ, Vanderhoof JA. Intestinal rehabilitation and the short bowel syndrome: part 2. Am J Gastroenterol. 2004;99(9):1823–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Diamond IR, Struijs MC, de Silva NT, Wales PW. Does the colon play a role in intestinal adaptation in infants with short bowel syndrome? A multiple variable analysis. J Pediatr Surg. 2010;45(5):975–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Spencer AU, Neaga A, West B, Safran J, Brown P, Btaiche I, et al. Pediatric short bowel syndrome: redefining predictors of success. Ann Surg. 2005;242(3):403.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Dowling RH, Booth CC. Functional compensation after small-bowel resection in man. Demonstration by direct measurement. Lancet. 1966;2(7455):146.PubMedGoogle Scholar
  20. 20.
    • Warner BW. The pathogenesis of resection-associated intestinal adaptation. Cell Mol Gastroenterol Hepatol. 2016;2(4):429–38. This study provides a comprehensive review of what is currently known of the molecular pathways responsible for intestinal adaptation.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Buchman AL, Scolapio J, Fryer J. AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology. 2003;124(4):1111–34.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Thiesen A, Drozdowski L, Iordache C, Neo CC, Woudstra TD, Xenodemetropoulos T, et al. Adaptation following intestinal resection: mechanisms and signals. Best Pract Res Clin Gastroenterol. 2003;17(6):981–95.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Martin CA, Perrone EE, Longshore SW, Toste P, Bitter K, Nair R, et al. Intestinal resection induces angiogenesis within adapting intestinal villi. J Pediatr Surg. 2009;44(6):1077–83.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Juno RJ, Knott AW, Profitt SA, Jarboe MD, Zhang Y, Erwin CR, et al. Preventing enterocyte apoptosis after massive small bowel resection does not enhance adaptation of the intestinal mucosa. J Pediatr Surg. 2004;39(6):907–11.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Stern LE, Erwin CR, Falcone RA, Huang FS, Kemp CJ, Williams JL, et al. cDNA microarray analysis of adapting bowel after intestinal resection. J Pediatr Surg. 2001;36(1):190–5.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Erwin CR, Jarboe MD, Sartor MA, Medvedovic M, Stringer KF, Warner BW, et al. Developmental characteristics of adapting mouse small intestine crypt cells. Gastroenterology. 2006;130(4):1324–32.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    DiBaise JK, Young RJ, Vanderhoof JA. Intestinal rehabilitation and the short bowel syndrome: part 1. Am J Gastroenterol. 2004;99(7):1386–95.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Feldman EJ, Dowling RH, McNaughton J, Peters TJ. Effects of oral versus intravenous nutrition on intestinal adaptation after small bowel resection in the dog. Gastroenterology. 1976;70(5 PT.1):712.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Koopmann MC, Liu X, Boehler CJ, Murali SG, Holst JJ, Ney DM. Colonic GLP-2 is not sufficient to promote jejunal adaptation in a PN-dependent rat model of human short bowel syndrome. JPEN J Parenter Enteral Nutr. 2009;33(6):629–39.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kelly DG, Tappenden KA, Winkler MF. Short bowel syndrome: highlights of patient management, quality of life, and survival. JPEN J Parenter Enteral Nutr. 2014;38(4):427–37.PubMedCrossRefGoogle Scholar
  31. 31.
    Jeppesen PB, Pertkiewicz M, Messing B, Iyer K, Seidner DL, O'keefe SJ, et al. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology. 2012;143(6):1473–1481.e3.PubMedCrossRefGoogle Scholar
  32. 32.
    McMellen ME, Wakeman D, Longshore SW, McDuffie LA, Warner BW. Growth factors: possible roles for clinical management of the short bowel syndrome. Semin Pediatr Surg. 2010;19(1):35–43.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Joly F, Mayeur C, Bruneau A, Noordine ML, Meylheuc T, Langella P, et al. Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome. Biochimie. 2010;92(7):753–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Davidovics ZH, Carter BA, Luna RA, Hollister EB, Shulman RJ, Versalovic J. The fecal microbiome in pediatric patients with short bowel syndrome. JPEN J Parenter Enteral Nutr. 2016;40(8):1106–13.PubMedCrossRefGoogle Scholar
  35. 35.
    • Neelis E, de Koning B, Rings E, Wijnen R, Nichols B, Hulst J, et al. The gut microbiome in patients with intestinal failure: current evidence and implications for clinical practice. JPEN J Parenter enteral Nutr. 2019;43(2):194. This study provides a current review of the studies available on the microbiome of short gut patients and summarizes nicely how it contributes to the pathogenesis of their septic episodes.PubMedCrossRefGoogle Scholar
  36. 36.
    Engelstad HJ, Barron L, Moen J, Wylie TN, Wylie K, Rubin DC, et al. Remnant small bowel length in pediatric short bowel syndrome and the correlation with intestinal dysbiosis and linear growth. J Am Coll Surg. 2018 Oct;227(4):439–49.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Engstrand Lilja H, Wefer H, Nyström N, Finkel Y, Engstrand L. Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome. Microbiome. 2015;3:18.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sondheimer JM, Asturias E, Cadnapaphornchai M. Infection and cholestasis in neonates with intestinal resection and long-term parenteral nutrition. J Pediatr Gastroenterol Nutr. 1998;27(2):131–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Cole CR, Frem JC, Schmotzer B, Gewirtz AT, Meddings JB, Gold BD, et al. The rate of bloodstream infection is high in infants with short bowel syndrome: relationship with small bowel bacterial overgrowth, enteral feeding, and inflammatory and immune responses. J Pediatr. 2010;156(6):941–947.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kowlgi NG, Chhabra L. D-lactic acidosis: an underrecognized complication of short bowel syndrome. Gastroenterol Res Pract. 2015;2015:476215.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Uchida H, Yamamoto H, Kisaki Y, Fujino J, Ishimaru Y, Ikeda H. D-lactic acidosis in short-bowel syndrome managed with antibiotics and probiotics. J Pediatr Surg. 2004 Apr;39(4):634–6.PubMedCrossRefGoogle Scholar
  42. 42.
    • Merritt RJ, Cohran V, Raphael BP, Sentongo T, Volpert D, Warner BW, et al. Intestinal rehabilitation programs in the management of pediatric intestinal failure and short bowel syndrome. J Pediatr Gastroenterol Nutr. 2017;65(5):588. This study provides an outline of the current participants in a successful intestinal failure program that leads to improved patient outcomes.PubMedCrossRefGoogle Scholar
  43. 43.
    Stanger JD, Oliveira C, Blackmore C, Avitzur Y, Wales PW. The impact of multi-disciplinary intestinal rehabilitation programs on the outcome of pediatric patients with intestinal failure: a systematic review and meta-analysis. J Pediatr Surg. 2013;48(5):983–92.PubMedCrossRefGoogle Scholar
  44. 44.
    Terra RM, Plopper C, Waitzberg DL, Cukier C, Santoro S, Martins JR, et al. Remaining small bowel length: association with catheter sepsis in patients receiving home total parenteral nutrition: evidence of bacterial translocation. World J Surg. 2000;24(12):1537–41.PubMedCrossRefGoogle Scholar
  45. 45.
    Mohammed A, Grant FK, Zhao VM, Shane AL, Ziegler TR, Cole CR. Characterization of posthospital bloodstream infections in children requiring home parenteral nutrition. JPEN J Parenter Enteral Nutr. 2011 Sep;35(5):581–7.PubMedCrossRefGoogle Scholar
  46. 46.
    • Eisenberg M, Monuteaux MC, Fell G, Goldberg V, Puder M, Hudgins J. Central line-associated bloodstream infection among children with intestinal failure presenting to the emergency department with fever. J Pediatr. 2018;196:237. This study reviews infectious complications of intestinal failure patients and concludes that fevers in patients with CVCs have a high likelihood of representing a central line infection.PubMedCrossRefGoogle Scholar
  47. 47.
    Rahhal R, Abu-El-Haija MA, Fei L, Ebach D, Orkin S, Kiscaden E, et al. Systematic review and meta-analysis of the utilization of ethanol locks in pediatric patients with intestinal failure. JPEN J Parenter Enteral Nutr. 2018;42(4):690.PubMedGoogle Scholar
  48. 48.
    Wong T, Clifford V, McCallum Z, Shalley H, Peterkin M, Paxton G, et al. Central venous catheter thrombosis associated with 70% ethanol locks in pediatric intestinal failure patients on home parenteral nutrition: a case series. JPEN J Parenter Enteral Nutr. 2012;36(3):358–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Courtney CM, Warner BW. Pediatric intestinal failure-associated liver disease. Curr Opin Pediatr. 2017 Jun;29(3):363–70.PubMedCrossRefGoogle Scholar
  50. 50.
    Duro D, Mitchell PD, Kalish LA, Martin C, McCarthy M, Jaksic T, et al. Risk factors for parenteral nutrition–associated liver disease following surgical therapy for necrotizing enterocolitis: a Glaser Pediatric Research Network Study [corrected]. J Pediatr Gastroenterol Nutr. 2011;52(5):595–600.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cober MP, Killu G, Brattain A, Welch KB, Kunisaki SM, Teitelbaum DH. Intravenous fat emulsions reduction for patients with parenteral nutrition-associated liver disease. J Pediatr. 2012;160(3):421–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Levit OL, Calkins KL, Gibson LC, Kelley-Quon L, Robinson DT, Elashoff DA, et al. Low-dose intravenous soybean oil emulsion for prevention of cholestasis in preterm neonates. JPEN J Parenter Enteral Nutr. 2016;40(3):374–82.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Cober MP, Teitelbaum DH. Prevention of parenteral nutrition-associated liver disease: lipid minimization. Curr Opin Organ Transplant. 2010;15(3):330–3.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Premkumar MH, Carter BA, Hawthorne KM, King K, Abrams SA. High rates of resolution of cholestasis in parenteral nutrition-associated liver disease with fish oil-based lipid emulsion monotherapy. J Pediatr. 2013;162(4):793–798.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    • Barron L, Courtney C, Bao J, Onufer E, Panni RZ, Aladegbami B, et al. Intestinal resection-associated metabolic syndrome. J Pediatr Surg. 2018;53(6):1142–7. This study reviews known metabolic consequences of massive small bowel resection and demonstrates that many of the metabolic consequences are independent of parenteral nutrition.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Quigley EM, Marsh MN, Shaffer JL, Markin RS. Hepatobiliary complications of total parenteral nutrition. Gastroenterology. 1993;104(1):286–301.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Thompson JS. The role of prophylactic cholecystectomy in the short-bowel syndrome. Arch Surg. 1996;131(5):556.PubMedCrossRefGoogle Scholar
  58. 58.
    Rosen R, Hu L, Amirault J, Khatwa U, Ward DV, Onderdonk A. 16S community profiling identifies proton pump inhibitor related differences in gastric, lung, and oropharyngeal microflora. J Pediatr. 2015;166(4):917–23.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Yang CF, Duro D, Zurakowski D, Lee M, Jaksic T, Duggan C. High prevalence of multiple micronutrient deficiencies in children with intestinal failure: a longitudinal study. J Pediatr. 2011;159(1):39–44.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    • Neelis E, Olieman J, Rizopoulos D, Wijnen R, Rings E, de Koning B, et al. Growth, body composition, and micronutrient abnormalities during and after weaning off home parenteral nutrition. J Pediatr Gastroenterol Nutr. 2018;67(5):e95. This study reviews the growth abnormalities of SBS patients and the consequences of their micronutrient deficiencies.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ekema G, Milianti S, Boroni G. Total parenteral nutrition in patients with short bowel syndrome. Minerva Pediatr. 2009;61(3):283.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Wessel JJ, Kocoshis SA. Nutritional management of infants with short bowel syndrome. Semin Perinatol. 2007;31(2):104–11.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Jaksic T, Shew SB, Keshen TH, Dzakovic A, Jahoor F. Do critically ill surgical neonates have increased energy expenditure? J Pediatr Surg. 2001;36(1):63–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Woolf GM, Miller C, Kurian R, Jeejeebhoy KN. Nutritional absorption in short bowel syndrome. Evaluation of fluid, calorie, and divalent cation requirements. Dig Dis Sci. 1987;32(1):8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Gosselin KB, Duggan C. Enteral nutrition in the management of pediatric intestinal failure. J Pediatr. 2014;165(6):1085–90.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cummins AG, Thompson FM. Effect of breast milk and weaning on epithelial growth of the small intestine in humans. Gut. 2002;51(5):748–54.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pereira-Fantini PM, Thomas SL, Taylor RG, Nagy E, Sourial M, Fuller PJ, et al. Colostrum supplementation restores insulin-like growth factor-1 levels and alters muscle morphology following massive small bowel resection. JPEN J Parenter Enteral Nutr. 2008;32(3):266–75.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kulkarni S, Mercado V, Rios M, Arboleda R, Gomara R, Muinos W, et al. Breast milk is better than formula milk in preventing parenteral nutrition-associated liver disease in infants receiving prolonged parenteral nutrition. J Pediatr Gastroenterol Nutr. 2013;57(3):383–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Shulman RJ, Redel CA, Stathos TH. Bolus versus continuous feedings stimulate small-intestinal growth and development in the newborn pig. J Pediatr Gastroenterol Nutr. 1994;18(3):350–4.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Miller M, Burjonrappa S. A review of enteral strategies in infant short bowel syndrome: evidence-based or NICU culture? J Pediatr Surg. 2013;48(5):1099–112.PubMedCrossRefGoogle Scholar
  71. 71.
    Khalil BA, Ba'ath ME, Aziz A, Forsythe L, Gozzini S, Murphy F, et al. Intestinal rehabilitation and bowel reconstructive surgery: improved outcomes in children with short bowel syndrome. J Pediatr Gastroenterol Nutr. 2012;54(4):505–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Bonnard A, Staub G, Segura JF, Malbezin S, Dorgeret S, Aigrain Y, et al. Evaluation of intestinal absorption after longitudinal intestinal lengthening for short bowel syndrome. J Pediatr Surg. 2005;40(10):1587–91.PubMedCrossRefGoogle Scholar
  73. 73.
    Kim HB, Lee PW, Garza J, Duggan C, Fauza D, Jaksic T. Serial transverse enteroplasty for short bowel syndrome: a case report. J Pediatr Surg. 2003;38(6):881–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Modi BP, Langer M, Duggan C, Kim HB, Jaksic T. Serial transverse enteroplasty for management of refractory D-lactic acidosis in short-bowel syndrome. J Pediatr Gastroenterol Nutr. 2006;43(3):395–7.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sommovilla J, Warner BW. Surgical options to enhance intestinal function in patients with short bowel syndrome. Curr Opin Pediatr. 2014;26(3):350–5.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mercer DF, Hobson BD, Gerhardt BK, Grant WJ, Vargas LM, Langnas AN, et al. Serial transverse enteroplasty allows children with short bowel to wean from parenteral nutrition. J Pediatr. 2014;164(1):93–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Wester T, Borg H, Naji H, Stenström P, Westbacke G, Lilja HE. Serial transverse enteroplasty to facilitate enteral autonomy in selected children with short bowel syndrome. Br J Surg. 2014;101(10):1329–33.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sudan D. The current state of intestine transplantation: indications, techniques, outcomes and challenges. Am J Transplant. 2014;14(9):1976–84.PubMedCrossRefGoogle Scholar
  79. 79.
    Messing B, Crenn P, Beau P, Boutron-Ruault MC, Rambaud JC, Matuchansky C. Long-term survival and parenteral nutrition dependence in adult patients with the short bowel syndrome. Gastroenterology. 1999;117:1043–50.PubMedCrossRefGoogle Scholar
  80. 80.
    Bianchi A. Experience with longitudinal intestinal lengthening and tailoring. Eur J Pediatr Surg. 1999;9(4):256–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Abu-Elmagd K, Todo S, Tzakis A, Reyes J, Nour B, Furukawa H, et al. Three years clinical experience with intestinal transplantation. J Am Coll Surg. 1994;179(4):385–400.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Langnas AN, Shaw BW Jr, Antonson DL, Kaufman SS, Mack DR, Heffron TG, et al. Preliminary experience with intestinal transplantation in infants and children. Pediatrics. 1996;97(4):443–8.PubMedGoogle Scholar
  83. 83.
    Warner BW, Vanderhoof JA, Reyes JD. What’s new in the management of short gut syndrome in children. J Am Coll Surg. 2000;190(6):725–36.PubMedCrossRefGoogle Scholar
  84. 84.
    Fullerton BS, Sparks EA, Hall AM, Duggan C, Jaksic T, Modi BP. Enteral autonomy, cirrhosis, and long term transplant-free survival in pediatric intestinal failure patients. J Pediatr Surg. 2016;51(1):96–100.PubMedCrossRefGoogle Scholar
  85. 85.
    Infantino BJ, Mercer DF, Hobson BD, Fischer RT, Gerhardt BK, Grant WJ, et al. Successful rehabilitation in pediatric ultrashort small bowel syndrome. J Pediatr. 2013;163(5):1361–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Smith JM, Skeans MA, Horslen SP, Edwards EB, Harper AM, Snyder JJ, et al. OPTN/SRTR 2013 annual data report: intestine. Am J Transplant. 2015;15(Suppl 2):1–16.PubMedCrossRefGoogle Scholar
  87. 87.
    • Pet GC, McAdams RM, Melzer L, Oron AP, Horslen SP, Goldin A, et al. Attitudes surrounding the management of neonates with severe necrotizing enterocolitis. J Pediatr. 2018;199:186. This study reviews the attitudes of neonatologists and surgeons towards redirection in cases of massive small bowel loss. Many recommendations may be given without understanding of current outcomes in small bowel syndrome.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Courtney CM, Onufer EJ, Seiler KM, Warner BW. An anatomic approach to understanding mechanisms of intestinal adaptation. Semin Pediatr Surg. 2018;27(4):229–36.PubMedCrossRefGoogle Scholar
  89. 89.
    Balakrishnan A. Micromanaging the gut: unravelling the regulatory pathways that mediate the intestinal adaptive response. Ann R Coll Surg Engl. 2018;100(3):165–71.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Schall KA, Holoyda KA, Grant CN, Levin DE, Torres ER, Maxwell A, et al. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration. Am J Physiol Gastrointest Liver Physiol. 2015;309(3):G135–45.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Pediatric Surgery, Saint Louis Children’s Hospital, Department of SurgeryWashington University School of MedicineSt LouisUSA

Personalised recommendations