The Generalized Burr XII Power Series Distributions with Properties and Applications

  • Ibrahim Elbatal
  • Emrah AltunEmail author
  • Ahmed Z. Afify
  • Gamze Ozel


We define and study a new family of distributions, called generalized Burr XII power series class, by compounding the generalized Burr XII and power series distributions. Several properties of the new family are derived. The maximum likelihood estimation method is used to estimate the model parameters. The importance and potentiality of the new family are illustrated by means of three applications to real data sets.


Generalized Burr XII distribution Geometric distribution Maximum likelihood estimation Moments Power series distribution 


  1. 1.
    Afify AZ, Cordeiro GM, Ortega EMM, Yousof HM, Butt NS (2018) The four-parameter Burr XII distribution: properties, regression model and applications. Commun Stat Theory Methods 47:2605–2624CrossRefGoogle Scholar
  2. 2.
    Adamidis K, Loukas S (1998) A lifetime distribution with decreasing failure rate. Stat Probab Lett 39:35–42CrossRefGoogle Scholar
  3. 3.
    Andrews DF, Herzberg AM (1985) Data: a collection of problems from many fields for the student and research worker. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Barreto-Souza W, Morais AL, Cordeiro GM (2010) The Weibull-geometric distribution. J Stat Comput Simul 81:645–657CrossRefGoogle Scholar
  5. 5.
    Bjerkedal T (1960) Acquisition of resistance in Guinea pigs infected with different doses of virulent tubercle bacilli. Am J Hyg 72:130–148Google Scholar
  6. 6.
    Bonferroni CE (1930) Elmenti di statistica generale. Libreria Seber, FirenzeGoogle Scholar
  7. 7.
    Bourguignon M, Silva RB, Cordeiro GM (2014) A new class of fatigue life distributions. J Stat Comput Simul 84(12):2619–2635CrossRefGoogle Scholar
  8. 8.
    Chahkandi M, Ganjali M (2009) On some lifetime distributions with decreasing failure rate. Comput Stat Data Anal 53:4433–4440CrossRefGoogle Scholar
  9. 9.
    Coorner F, Banerjee S, Carlin BP, Sinha D (2007) Flexible cure rate modeling under latent activation schemes. J Am Stat Assoc 102:560–572CrossRefGoogle Scholar
  10. 10.
    Gradshteyn IS, Rhyzik IM (2000) Table of integrals, series, and products, 6th edn. Academic Press, San DiegoGoogle Scholar
  11. 11.
    Gupta RC (1981) On the mean residual life function in survival studies. Stat Distrib Sci Work 5:327–334Google Scholar
  12. 12.
    Gupta RC, Gupta PL (2000) On the crossing of reliability measures. Stat Probab Lett 46:301–305CrossRefGoogle Scholar
  13. 13.
    Johnson NL, Kemp AW, Kotz S (2005) Univariate discrete distributions, 3rd edn. Wiley, HobokenCrossRefGoogle Scholar
  14. 14.
    Kundu C, Nanda AK (2010) Some reliability properties of the inactivity time. Commun. Stat. Theory Methods 39:899–911CrossRefGoogle Scholar
  15. 15.
    Kus C (2007) A new lifetime distribution. Comput Stat Data Anal 51:4497–4509CrossRefGoogle Scholar
  16. 16.
    Lu W, Shi D (2012) A new compounding life distribution: the Weibull–Poisson distribution. J Appl Stat 39:21–38CrossRefGoogle Scholar
  17. 17.
    Mahmoudi E, Jafari AA (2012) Generalized exponential power series distributions. Comput Stat Data Anal 56:4047–4066CrossRefGoogle Scholar
  18. 18.
    Mi J (1996) Minimizing some cost functions related to both burn-in and field use. Oper Res 49:497–500CrossRefGoogle Scholar
  19. 19.
    Morais AL, Barreto-Souza W (2011) A compound family of Weibull and power series distributions. Comput Stat Data Anal 55:1410–1425CrossRefGoogle Scholar
  20. 20.
    Murthy DNP, Xie M, Jiang R (2004) Weibull models, Wiley series in probability and statistics. Wiley, New YorkGoogle Scholar
  21. 21.
    Nanda AK, Singh H, Misra N, Paul P (2003) Reliability properties of reversed residual lifetime. Commun Stat Theory Methods 32(10):2031–2042CrossRefGoogle Scholar
  22. 22.
    Noack A (1950) A class of random variables with discrete distributions. Ann Math Stat 21:127–132CrossRefGoogle Scholar
  23. 23.
    Peck DS, Zierdt CH (1974) The reliability of semiconductor devices in the bell system. Proc IEEE 62:185–211CrossRefGoogle Scholar
  24. 24.
    Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and series, 1. Gordon and Breach Science Publishers, AmsterdamGoogle Scholar
  25. 25.
    Prudnikov AP, Brychkov YA, Marichev OI (1992) Integrals and series, 4. Gordon and Breach Science Publishers, AmsterdamGoogle Scholar
  26. 26.
    Rodrigues C, Cordeiro GM, Demetrio CGB, Ortega EMM (2011) The Weibull negative binomial distribution. Adv Appl Stat 22(1):22–55Google Scholar
  27. 27.
    Silva RB, Bourguignon M, Dias CRB, Cordeiro GM (2013) The compound family of extended Weibull power series distributions. Comput Stat Data Anal 58:352–367CrossRefGoogle Scholar
  28. 28.
    Silva RB, Cordeiro GM (2015) The Burr XII power series distributions: a new compounding family. Braz J Probab Stat 29:565–589CrossRefGoogle Scholar
  29. 29.
    Tahmasbi R, Rezaei S (2008) A two-parameter lifetime distribution with decreasing failure rate. Comput Stat Data Anal 52:3889–3901CrossRefGoogle Scholar
  30. 30.
    Wang M (2013) A new three-parameter lifetime distribution and associated inference. arXiv:1308.4128v1 [stat.ME]

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ibrahim Elbatal
    • 1
  • Emrah Altun
    • 2
    Email author
  • Ahmed Z. Afify
    • 3
  • Gamze Ozel
    • 4
  1. 1.Department of Mathematics and StatisticsImam Muhammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia
  2. 2.Department of StatisticsBartin UniversityBartinTurkey
  3. 3.Department of Statistics, Mathematics and InsuranceBenha UniversityBenhaEgypt
  4. 4.Department of StatisticsHacettepe UniversityAnkaraTurkey

Personalised recommendations