Advertisement

Synthesis, Experimental and Theoretical Investigation of Tetrazole Derivative as an Effective Corrosion Inhibitor for Mild Steel in 1 M HCl

  • H. About
  • M. El Faydy
  • F. Benhiba
  • Z. Rouifi
  • M. Boudalia
  • A. Guenbour
  • H. Zarrok
  • B. Lakhrissi
  • H. Oudda
  • I. Warad
  • A. ZarroukEmail author
Article
  • 12 Downloads

Abstract

The 2-(4,5-dihydro-4-((8-hydroxyquinolin-5-yl) methyl)tetrazol-1-yl) benzamide, symbolized by QTB is a new organic inhibitor synthesized and characterized using 1H and 13C NMR spectroscopies. The corrosion inhibition of mild steel in 1 M HCl by QTB was studied by gravimetric, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The temperature effect on the corrosion behavior of steel in 1 M HCl in the absence and the presence of QTB is studied in the temperature range 298–328 K. Inhibition efficiency of QTB increased with an increase in the concentration of inhibitor and decreased with the increase in temperature. The adsorption of QTB on the steel surface obeys to the Langmuir’s adsorption isotherm. The thermodynamic parameters of activation and adsorption were calculated and discussed. The relationship between molecular structure of this compound and their inhibition efficiency has been investigated by ab initio quantum chemical calculations. The Monte Carlo simulation was found to be in good agreement with the experiments.

Keywords

Synthesis Tetrazole derivative Mild steel Corrosion inhibition Adsorption DFT 

Notes

Supplementary material

40735_2019_233_MOESM1_ESM.docx (4.2 mb)
Supplementary material 1 (DOCX 4295 kb)

References

  1. 1.
    Bahrami MJ, Hosseini SMA, Pilvar P (2010) Experimental and theoretical investigation of organic compounds as inhibitors for mild steel corrosion in sulfuric acid medium. Corros Sci 52:2793–2803CrossRefGoogle Scholar
  2. 2.
    Schmitt G (1984) Application of inhibitors for acid media: report prepared for the European federation of corrosion working party on inhibitors. Br Corros J 19:165–176CrossRefGoogle Scholar
  3. 3.
    Zarrok H, Saddik R, Oudda H, Hammouti B, El Midaoui A, Zarrouk A, Benchat N, Ebn Touhami M (2011) 5-(2-chlorobenzyl)-2, 6-dimethylpyridazin-3-one: an efficientInhibitor of C38 steel corrosion in hydrochloric acid. Der Pharm Chem 3:272–282Google Scholar
  4. 4.
    Abboud Y, Abourriche A, Saffaj T, Berrada M, Charrouf M, Bennamara A, Hannache H (2009) A novel azo dye, 8-quinolinol-5-azoantipyrine as corrosion inhibitor for mild steel in acidic media. Desalination 237:175–189CrossRefGoogle Scholar
  5. 5.
    Mernari B, El Attari H, Traisnel M, Bentiss F, Lagrenee M (1998) Inhibiting effects of 3, 5-bis (n-pyridyl)-4-amino-1, 2, 4-triazoles on the corrosion for mild steel in 1 M HCl medium. Corros Sci 40:391–399CrossRefGoogle Scholar
  6. 6.
    Obot IB, Ebenso EE, Kabanda MM (2013) Metronidazole as environmentally safe corrosion inhibitor for mild steel in 0.5 M HCl: experimental and theoretical investigation. J Environ Chem Eng 1:431–439CrossRefGoogle Scholar
  7. 7.
    El-Maksoud SAA (2003) The influence of some Arylazobenzoyl acetonitrile derivatives on the behaviour of carbon steel in acidic media. Appl Surf Sci 206:129–136CrossRefGoogle Scholar
  8. 8.
    Kertit S, Hammouti B (1996) Corrosion inhibition of iron in 1 M HCl by 1-phenyl-5-mercapto-1, 2, 3, 4-tetrazole. Appl Surf Sci 93:59–66CrossRefGoogle Scholar
  9. 9.
    Hassan HH, Abdelghani E, Amin MA (2007) Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: part I. Polarization and EIS studies. Electrochim Acta 52:6359–6366CrossRefGoogle Scholar
  10. 10.
    Watson AA, Fleet GW, Asano N, Molyneux RJ, Nash RJ (2001) Polyhydroxylated alkaloids—natural occurrence and therapeutic applications. Phytochemistry 56:265–295CrossRefGoogle Scholar
  11. 11.
    Atwell GJ, Baguley BC, Denny WA (1998) Potential antitumor agents. 57. 2-Phenylquinoline-8-carboxamides as minimal DNA-intercalating antitumor agents with in vivo solid tumor activity. J Med Chem 32:396–401CrossRefGoogle Scholar
  12. 12.
    Lukovits I, Kalman E, Zucchi F (2001) Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion 57:3–8CrossRefGoogle Scholar
  13. 13.
    Frisch MJ, Trucks GW, Schlegel HB et al (2008) Gaussian 03, Revision C.02Google Scholar
  14. 14.
    El Faydy M, Galai M, Touhami ME, Obot IB, Lakhrissi B, Zarrouk A (2017) Anticorrosion potential of some 5-amino-8-hydroxyquinolines derivatives on carbon steel in hydrochloric acid solution: gravimetric, electrochemical, surface morphological, UV–visible, DFT and Monte Carlo simulations. J Mol Liq 248:1014–1027CrossRefGoogle Scholar
  15. 15.
    Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364CrossRefGoogle Scholar
  16. 16.
    Cao C (1996) On electrochemical techniques for interface inhibitor research. Corros Sci 38:2073–2082CrossRefGoogle Scholar
  17. 17.
    Moradi M, Duan J, Du X (2013) Investigation of the effect of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one inhibition on the corrosion of carbon steel in Bacillus sp. inoculated artificial seawater. Corros Sci 69:338–345CrossRefGoogle Scholar
  18. 18.
    El Faydy M, Touir R, Ebn Touhami M, Zarrouk A, Jama C, Lakhrissi B, Olasunkanmi LO, Ebenso EE, Bentiss F (2018) Corrosion inhibition performance of newly synthesized 5-alkoxymethyl-8-hydroxyquinoline derivatives for carbon steel in 1 M HCl solution: experimental, DFT and Monte Carlo simulation studies. Phys Chem Chem Phys 20:20167–20187CrossRefGoogle Scholar
  19. 19.
    Prabhu RA, Venkatesha TV, Shanbhag AV, Kulkarni GM, Kalkhambkar RG (2008) Inhibition effects of some Schiff’s bases on the corrosion of mild steel in hydrochloric acid solution. Corros Sci 50:3356–3362CrossRefGoogle Scholar
  20. 20.
    Tang Y, Yang X, Yang W, Chen Y, Wan R (2010) Experimental and molecular dynamics studies on corrosion inhibition of mild steel by 2-amino-5-phenyl1,3,4-thiadiazole. Corros Sci 52:242–249CrossRefGoogle Scholar
  21. 21.
    Tebbji K, Faska N, Tounsi A, Oudda H, Benkaddour M, Hammouti B (2007) The effect of some lactones as inhibitors for the corrosion of mild steel in 1 M hydrochloric acid. Mater Chem Phys 106:260–267CrossRefGoogle Scholar
  22. 22.
    Bentiss F, Lebrini M, Lagreneé M (2005) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2, 5-bis (n-thienyl)-1, 3, 4-thiadiazoles/hydrochloric acid system. Corros Sci 47:2915–2931CrossRefGoogle Scholar
  23. 23.
    Riggs OL, Hurd RM (1967) Temperature coefficient of corrosion inhibition. Corrosion 33:252–260CrossRefGoogle Scholar
  24. 24.
    Liu R, Qiao Y, Yan M, Fu Y (2012) Effects of rare earth elements on the characteristics of low temperature plasma nitrocarburized martensitic stainless steel. J Mater Sci Technol 28:1046–1052CrossRefGoogle Scholar
  25. 25.
    Durnie W, Marco R, Jefferson A, Kinsella B (1999) Development of a structure-activity relationship for oil field corrosion inhibitors. Electrochem Soc 146:1751–1756CrossRefGoogle Scholar
  26. 26.
    Hosseini SMA, Salari M, Ghasemi M, Abaszadeh M (2009) Enaminone compounds as corrosion inhibitors for austenitic stainless steel in sulphuric acid solution. Z Phys Chem 223:769–779CrossRefGoogle Scholar
  27. 27.
    Tayebi H, Bourazmi H, Himmi B, El Assyry A, Ramli Y, Zarrouk A, Geunbour A, Hammouti B (2014) Combined electrochemical and quantum chemical study of new quinoxaline derivative as corrosion inhibitor for carbon steel in acidic media. Der Pharm Chem 6(5):220–234Google Scholar
  28. 28.
    Tayebi H, Bourazmi H, Himmi B, El Assyry A, Ramli Y, Zarrouk A, Geunbour A, Hammouti B, Ebenso EE (2014) An electrochemical and theoretical evaluation of new quinoline derivative as a corrosion inhibitor for carbon steel in HCL solutions. Der Pharm Lett 6(6):20–34Google Scholar
  29. 29.
    Zarrouk A, Zarrok H, Salghi R, Touir R, Hammouti B, Benchat N, Afrine LL, Hannache H, El Hezzat M, Bouachrine M (2013) Electrochemical impedance spectroscopy weight loss and quantum chemical study of new pyridazine derivative as inhibitor corrosion of copper in nitric acid. J Chem Pharm Res 5(12):1482–1491Google Scholar
  30. 30.
    Zarrok H, Salghi R, Zarrouk A, Hammouti B, Oudda H, Bazzi L, Bammou L, Al Deyab SS (2012) Investigation of the inhibition effect of N-1-Naphthylethylenediamine dihydrochloride monomethanolate on the C38 steel corrosion in 0.5 M H2SO4. Der Pharma Chem 4(1):407–416Google Scholar
  31. 31.
    Tazouti A, Galai M, Touir R, Touhami ME, Zarrouk A, Ramli Y, Saraçoğlu M, Kaya S, Kandemirli F, Kaya C (2016) Experimental and theoretical studies for mild steel corrosion inhibition in 1.0 M HCl by three new quinoxalinone derivatives. J Mol Liq 222:239–252CrossRefGoogle Scholar
  32. 32.
    Obot IB, Macdonald DD, Gasem ZM (2015) Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corros Sci 99:1–30CrossRefGoogle Scholar
  33. 33.
    Frisch MJ et al (2009) Gaussian 09, revision D 01Google Scholar
  34. 34.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  35. 35.
    Zarrouk A, Zarrok H, Ramli Y, Bouachrine M, Hammouti B, Sahibed-dine A, Bentiss F (2016) Inhibitive properties, adsorption and theoretical study of 3,7-dimethyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one as efficient corrosion inhibitor for carbon steel in hydrochloric acid solution. J Mol Liq 222:239–252CrossRefGoogle Scholar
  36. 36.
    Abdel-Gaber AM, Abd-El-Nabey BA, Sidahmed IM, El-Zayady AM, Saadawy M (2006) Inhibitive action of some plant extracts on the corrosion of steel in acidic media. Corros Sci 48:2765–2779CrossRefGoogle Scholar
  37. 37.
    El Azzouzi M, Aouniti A, Tighadouin S, Elmsellem H, Radi S, Hammouti B, El Assyry A, Bentiss F, Zarrouk A (2016) Some hydrazine derivatives as corrosion inhibitors for mild steel in 1.0 M HCl: weight loss, electrochemichal, SEM and theoretical studies. J Mol Liq 221:633–641CrossRefGoogle Scholar
  38. 38.
    El Hezzat M, Assouag M, Zarrok H, Benzekri Z, El Assyry A, Boukhris S, Souizi A, Galai M, Touir R, Ebn Touhami M, Oudda H, Zarrouk A (2015) Correlated DFT and electrochemical study on inhibition behavior of ethyl 6-amino-5-cyano-2-methyl-4-(p-tolyl)-4H-pyran-3-carboxylate for the corrosion of mild steel in HCl. Der Pharm Chem 7(10):77–88Google Scholar
  39. 39.
    Zhang K, Xu B, Yang W, Yin X, Liu Y (2015) Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci 90:284–295CrossRefGoogle Scholar
  40. 40.
    Kaya S, Guo L, Kaya C, Tuzun B, Obot IB, Touir R, Islam N (2016) Quantum chemical and molecular dynamic simulation studies for the prediction of inhibition efficiencies of some piperidine derivatives on the corrosion of iron. J Taiwan Inst Chem Eng 65:522–529CrossRefGoogle Scholar
  41. 41.
    ELouadi Y, Abrigach F, Bouyanzer A, Touzani R, Riant O, ElMahi B, El Assyry A, Radi S, Zarrouk A, Hammouti B (2015) Corrosion inhibition of mild steel by new N-heterocyclic compound in 1 M HCl: experimental and computational study. Der Pharm Chem 7(8):265–275Google Scholar
  42. 42.
    Olasunkanmi LO, Kabanda MM, Ebenso EE (2016) Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: electrochemical and quantum chemical studies. Phys E Low-Dimens Syst Nanostruct 76:109–126CrossRefGoogle Scholar
  43. 43.
    Ahamad I, Prasad R, Quraishi MA (2010) Inhibition of mild steel corrosion in acid solution by Pheniramine drug: experimental and theoretical study. Corros Sci 52:3033–3041CrossRefGoogle Scholar
  44. 44.
    Sebastian SHR Sr., Attia MI, Almutairi MS, El-Emam AA, Panicker CY, van Alsenoy C (2014) FT-IR, FT-Raman, molecular structure, first order hyperpolarizability, HOMO and LUMO analysis, MEP and NBO analysis of 3-(adamantan-1-yl)-4-(prop-2-en-1-yl)-1H-1, 2, 4-triazole-5 (4H)-thione, a potential bioactive agent. Spectrochim Acta A Mol Biomol Spectrosc 132:295–304CrossRefGoogle Scholar
  45. 45.
    Panicker CY, Varghese HT, Manjula PS, Sarojini BK, Narayana B, War JA, Srivastava SK, van Alsenoy C, Al-Saadi AA (2015) FT-IR, HOMO–LUMO, NBO, MEP analysis and molecular docking study of 3-Methyl-4-{(E)-[4-(methylsulfanyl)-benzylidene] amino} 1H-1, 2, 4-triazole-5 (4H)-thione. Spectrochim Acta A Mol Biomol Spectrosc 151:198–207CrossRefGoogle Scholar
  46. 46.
    Kaya S, Kaya C, Guo L, Kandemirli F, Tüzün B, Uğurlu İ, Madkour LH, Saraçoğlu M (2016) Quantum chemical and molecular dynamics simulation studies on inhibition performances of some thiazole and thiadiazole derivatives against corrosion of iron. J Mol Liq 219:497–504CrossRefGoogle Scholar
  47. 47.
    Saha SK, Murmu M, Murmu NC, Banerjee P (2016) Evaluating electronic structure of quinazolinone and pyrimidinone molecules for its corrosion inhibition effectiveness on target specific mild steel in the acidic medium: a combined DFT and MD simulation study. J Mol Liq 224:629–638CrossRefGoogle Scholar
  48. 48.
    Eddy NO, Momoh-Yahaya H, Oguzie EE (2015) Theoretical and experimental studies on the corrosion inhibition potentials of some purines for aluminum in 0.1 M HCl. J Adv Res 6:203–217CrossRefGoogle Scholar
  49. 49.
    Shahraki M, Dehdab M, Elmi S (2016) Theoretical studies on the corrosion inhibition performance of three amine derivatives on carbon steel: molecular dynamics simulation and density functional theory approaches. J Taiwan Inst Chem Eng 62:313–321CrossRefGoogle Scholar
  50. 50.
    Lewis GN (1923) Valence and the structure of atoms and molecules. Chemical Catalog Company Inc, New YorkGoogle Scholar
  51. 51.
    Kaya S, Banerjee P, Saha SK, Tüzün B, Kaya C (2016) Theoretical evaluation of some benzotriazole and phospono derivatives asaluminum corrosion inhibitors: DFT and molecular dynamics simulation approaches. RSC Adv 6:74550–74559CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • H. About
    • 1
    • 2
  • M. El Faydy
    • 2
  • F. Benhiba
    • 1
  • Z. Rouifi
    • 1
    • 2
  • M. Boudalia
    • 3
  • A. Guenbour
    • 3
  • H. Zarrok
    • 1
  • B. Lakhrissi
    • 2
  • H. Oudda
    • 1
  • I. Warad
    • 4
  • A. Zarrouk
    • 3
    Email author
  1. 1.Laboratory of Separation Processes, Faculty of ScienceIbnTofail UniversityKenitraMorocco
  2. 2.Laboratory of Agro-Resources, Polymers and Process Engineering, Department of Chemistry, Faculty of ScienceIbnTofail UniversityKenitraMorocco
  3. 3.Laboratory of Materials, Nanotechnology and Environment, Faculty of SciencesMohammed V UniversityRabatMorocco
  4. 4.Department of ChemistryAN-Najah National UniversityNablusPalestine

Personalised recommendations