Magnesium-Based Bioresorbable Stent Materials: Review of Reviews

  • Lilia AljihmaniEmail author
  • Lejla Alic
  • Younes Boudjemline
  • Ziyad M. Hijazi
  • Bilal MansoorEmail author
  • Erchin Serpedin
  • Khalid QaraqeEmail author


Many materials proposed as bioresorbable. However, in the clinical cardiology practice, they are not often used. This study evaluates the mechanical and corrosion properties of magnesium-based bioresorbable materials and identifies barriers to their implementation in clinical practice. The Embase, Scopus, Springer Link, and Science Direct databases searched up to April 4th, 2018. The magnesium-based materials were classified according to the compound materials used for enrichment. We have summarized the mechanical and corrosion properties separately. Of the 4194 potentially relevant publications, 101 reported systematic reviews. Of these studies, we included 37 in our review of reviews. In 51% of reviews, the authors reported mechanical properties and in 40% corrosion properties.


Bioresorbable material Cardiovascular stent Magnesium Mechanical properties Corrosion properties 



This publication was made possible by the sponsorship agreement in support of research and collaboration by Sidra Medicine, Doha, Qatar (Grant Number SIRF_200041) and Ooredoo. The statements made herein are solely the responsibility of the authors.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

40735_2019_216_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 KB)


  1. 1.
    Gu X-N, Zheng Y (2010) A review on magnesium alloys as biodegradable materials. Front Mater Sci China 4(2):111–115. CrossRefGoogle Scholar
  2. 2.
    Lam MT, Wu JC (2012) Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev Cardiovasc Ther 10(8):1039–1049. CrossRefGoogle Scholar
  3. 3.
    Sharif F, Daly K, Crowley J, O’Brien T (2004) Current status of catheter- and stent-based gene therapy. Cardiovasc Res 64(2):208–216. CrossRefGoogle Scholar
  4. 4.
    Hermawan H, Dube D, Mantovani D (2010) Developments in metallic biodegradable stents. Acta Biomater 6(5):1693–1697. CrossRefGoogle Scholar
  5. 5.
    Qi PK, Yang Y, Maitz FM, Huang N (2013) Current status of research and application in vascular stents. Chin Sci Bull 58(35):4362–4370. CrossRefGoogle Scholar
  6. 6.
    Zollikofer CL, Antonucci F, Stuckmann G, Mattias P, Salomonowitz EK (1992) Historical overview on the development and characteristics of stents and future outlooks. Cardiovasc Inter Rad 15(5):272–278CrossRefGoogle Scholar
  7. 7.
    Wiebe J, Nef HM, Hamm CW (2014) Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J Am Coll Cardiol 64(23):2541–2551. CrossRefGoogle Scholar
  8. 8.
    Gogas BD, McDaniel M, Samady H, King SB (2014) Novel drug-eluting stents for coronary revascularization. Trends Cardiovasc Med 24(7):305–313. CrossRefGoogle Scholar
  9. 9.
    Chen YJ, Xu ZG, Smith C, Sankar J (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10(11):4561–4573. CrossRefGoogle Scholar
  10. 10.
    Bartosch M, Schubert S, Berger F (2015) Magnesium stents—fundamentals, biological implications and applications beyond coronary arteries. BioNanoMaterials 16(1):3–17. CrossRefGoogle Scholar
  11. 11.
    Ramcharitar S, Serruys PW (2008) Fully biodegradable coronary stents progress to date. Am J Cardiovasc Drug 8(5):305–314. CrossRefGoogle Scholar
  12. 12.
    Capodanno D (2016) Bioresorbable scaffolds: clinical outcomes and considerations. Interv Cardiol Clin 5(3):357–363. CrossRefGoogle Scholar
  13. 13.
    Hou LD, Li Z, Pan Y, Sabir M, Zheng YF, Li L (2016) A review on biodegradable materials for cardiovascular stent application. Front Mater Sci 10(3):238–259. CrossRefGoogle Scholar
  14. 14.
    Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R 77:1–34. CrossRefGoogle Scholar
  15. 15.
    Ang HY, Bulluck H, Wong P, Venkatraman SS, Huang Y, Foin N (2017) Bioresorbable stents: current and upcoming bioresorbable technologies. Int J Cardiol 228:931–939. CrossRefGoogle Scholar
  16. 16.
    Mostaed E, Sikora-Jasinska M, Drelich JW, Vedani M (2018) Zinc-based alloys for degradable vascular stent applications. Acta Biomater 71:1–23. CrossRefGoogle Scholar
  17. 17.
    O’Brien B, Zafar H, Ibrahim A, Zafar J, Sharif F (2016) Coronary stent materials and coatings: a technology and performance update. Ann Biomed Eng 44(2):523–535. CrossRefGoogle Scholar
  18. 18.
    Li X, Liu XM, Wu SL, Yeung KWK, Zheng YF, Chu PK (2016) Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface. Acta Biomater 45:2–30. CrossRefGoogle Scholar
  19. 19.
    Sezer N, Evis Z, Kayhan SM, Tahmasebifar A, Koc M (2018) Review of magnesium-based biomaterials and their applications. J Magnes Alloy 6(1):23–43. CrossRefGoogle Scholar
  20. 20.
    Gu XN, Li SS, Li XM, Fan YB (2014) Magnesium based degradable biomaterials: a review. Front Mater Sci 8(3):200–218. CrossRefGoogle Scholar
  21. 21.
    Feng QM, Zhang DY, Xin CH, Liu XD, Lin WJ, Zhang WQ, Chen S, Sun K (2013) Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent. J Mater Sci-Mater Med 24(3):713–724. CrossRefGoogle Scholar
  22. 22.
    Francis A, Yang Y, Virtanen S, Boccaccini AR (2015) Iron and iron-based alloys for temporary cardiovascular applications. J Mater Sci-Mater Med 26(3):138. CrossRefGoogle Scholar
  23. 23.
    Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8(11):3888–3903. CrossRefGoogle Scholar
  24. 24.
    Li HF, Zheng YF (2016) Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater 36:1–20. CrossRefGoogle Scholar
  25. 25.
    Esmaily M, Svensson JE, Fajardo S, Birbilis N, Frankel GS, Virtanen S, Arrabal R, Thomas S, Johansson LG (2017) Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci 89:92–193. CrossRefGoogle Scholar
  26. 26.
    Narayanan TSNS, Park IS, Lee MH (2014) Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges. Prog Mater Sci 60:1–71. CrossRefGoogle Scholar
  27. 27.
    Matias TB, Asato GH, Ramasco BT, Botta WJ, Kiminami CS, Bolfarini C (2014) Processing and characterization of amorphous magnesium based alloy for application in biomedical implants. J Mater Res Technol 3(3):203–209. CrossRefGoogle Scholar
  28. 28.
    Jafari S, Harandi SE, Raman RKS (2015) A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications. JOM-Us 67(5):1143–1153. CrossRefGoogle Scholar
  29. 29.
    Berglund J, Guo Y, Wilcox JN (2009) Challenges related to development of bioabsorbable vascular stents. EuroIntervention Suppl 5:F72–F79CrossRefGoogle Scholar
  30. 30.
    Agarwal S, Curtin J, Duffy B, Jaiswal S (2016) Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C 68:948–963. CrossRefGoogle Scholar
  31. 31.
    Hanawa T (2009) Materials for metallic stents. J Artif Organs 12(2):73–79. CrossRefGoogle Scholar
  32. 32.
    Waksman R (2007) Promise and challenges of bioabsorbable stents. Catheter Cardiovasc Interv 70(3):407–414. CrossRefGoogle Scholar
  33. 33.
    Tenekecioglu E, Farooq V, Bourantas CV, Silva RC, Onuma Y, Yilmaz M, Serruys PW (2016) Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention. BMC Cardiovasc Disord. CrossRefGoogle Scholar
  34. 34.
    Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6(5):1680–1692. CrossRefGoogle Scholar
  35. 35.
    Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (2015) ASTM International, West Conshohocken, PA.
  36. 36.
    Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials (2017) ASTM International, West Conshohocken, PA.
  37. 37.
    Mao L, Shen L, Chen JH, Zhang XB, Kwak M, Wu Y, Fan R, Zhang L, Pei J, Yuan GY, Song CL, Ge JB, Ding WJ (2017) A promising biodegradable magnesium alloy suitable for clinical vascular stent application. Sci Rep-UK. CrossRefGoogle Scholar
  38. 38.
    Atrens A, Song G-L, Cao F, Shi Z, Bowen PK (2013) Advances in Mg corrosion and research suggestions. J Magnes Alloy 1(3):177–200. CrossRefGoogle Scholar
  39. 39.
    ASM Handbook, Corrosion: fundamentals, testing, and protection (2003) Corrosion: fundamentals, testing, and protection. ASM International, Materials ParkGoogle Scholar
  40. 40.
    Antunes RA, de Oliveira MCL (2012) Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater 8(3):937–962. CrossRefGoogle Scholar
  41. 41.
    Wang Y, Wei M, Gao JC, Hu JZ, Zhang Y (2008) Corrosion process of pure magnesium in simulated body fluid. Mater Lett 62(14):2181–2184. CrossRefGoogle Scholar
  42. 42.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. CrossRefGoogle Scholar
  43. 43.
    Chen QZ, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R 87:1–57. CrossRefGoogle Scholar
  44. 44.
    Im SH, Jung Y, Kim SH (2017) Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater 60:3–22. CrossRefGoogle Scholar
  45. 45.
    Jiang W, Rutherford D, Vuong T, Liu H (2017) Nanomaterials for treating cardiovascular diseases: a review. Bioact Mater 2(4):185–198. CrossRefGoogle Scholar
  46. 46.
    Mani G, Feldman MD, Patel D, Agrawal CM (2007) Coronary stents: a materials perspective. Biomaterials 28(9):1689–1710. CrossRefGoogle Scholar
  47. 47.
    Lipinski MJ, Escarcega RO, Lhermusier T, Waksman R (2014) The effects of novel, bioresorbable scaffolds on coronary vascular pathophysiology. J Cardiovasc Transl 7(4):413–425. CrossRefGoogle Scholar
  48. 48.
    Onuma Y, Muramatsu T, Kharlamov A, Serruys PW (2012) Freeing the vessel from metallic cage: what can we achieve with bioresorbable vascular scaffolds? Cardiovasc Interv Ther 27(3):141–154. CrossRefGoogle Scholar
  49. 49.
    Atrens A, Liu M, Abidin NIZ (2011) Corrosion mechanism applicable to biodegradable magnesium implants. Mater Sci Eng B 176(20):1609–1636. CrossRefGoogle Scholar
  50. 50.
    Vedani M, Ge Q, Wu W, Petrini L (2014) Texture effects on design of Mg biodegradable stents. Int J Mater Form 7(1):31–38. CrossRefGoogle Scholar
  51. 51.
    Li P, Zhou NL, Qiu H, Maitz MF, Wang J, Huang N (2018) In vitro and in vivo cytocompatibility evaluation of biodegradable magnesium-based stents: a review. Sci China Mater 61(4):501–515. CrossRefGoogle Scholar
  52. 52.
    Brie D, Penson P, Serban M-C, Toth PP, Simonton C, Serruys PW, Banach M (2016) Bioresorbable scaffold—a magic bullet for the treatment of coronary artery disease? Int J Cardiol 215:47–59. CrossRefGoogle Scholar
  53. 53.
    Iqbal J, Onuma Y, Ormiston J, Abizaid A, Waksman R, Serruys P (2014) Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J 35(12):765–776. CrossRefGoogle Scholar
  54. 54.
    Boland EL, Shine R, Kelly N, Sweeney CA, McHugh PE (2016) A review of material degradation modelling for the analysis and design of bioabsorbable stents. Ann Biomed Eng 44(2):341–356. CrossRefGoogle Scholar
  55. 55.
    Bowen PK, Shearier ER, Zhao S, Guillory RJ, Zhao F, Goldman J, Drelich JW (2016) Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys. Adv Healthc Mater 5(10):1121–1140. CrossRefGoogle Scholar
  56. 56.
    Onuma Y, Ormiston J, Serruys PW (2011) Bioresorbable scaffold technologies. Circ J 75(3):509–520. CrossRefGoogle Scholar
  57. 57.
    Kang J, Han JK, Yang HM, Park KW, Kang HJ, Koo BK, Kim HS (2017) Bioresorbable vascular scaffolds—are we facing a time of crisis or one of breakthrough? Circ J 81(8):1065–1074. CrossRefGoogle Scholar
  58. 58.
    Iqbal J, Gunn J, Serruys PW (2013) Coronary stents: historical development, current status and future directions. Brit Med Bull 106(1):193–211. CrossRefGoogle Scholar
  59. 59.
    Costopoulos C, Naganuma T, Latib A, Colombo A (2013) Looking into the future with bioresorbable vascular scaffolds. Expert Rev Cardiovasc Ther 11(10):1407–1416CrossRefGoogle Scholar
  60. 60.
    Garg S, Serruys PW (2010) Coronary stents: looking forward. J Am Coll Cardiol 56(10 Suppl):S43–S78. CrossRefGoogle Scholar
  61. 61.
    Foin N, Lee RD, Torii R, Guitierrez-Chico JL, Mattesini A, Nijjer S, Sen S, Petraco R, Davies JE, Di Mario C, Joner M, Virmani R, Wong P (2014) Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol 177(3):800–808. CrossRefGoogle Scholar
  62. 62.
    Johnston S, Dargusch M, Atrens A (2018) Building towards a standardised approach to biocorrosion studies: a review of factors influencing Mg corrosion in vitro pertinent to in vivo corrosion. Sci China Mater 61(4):475–500. CrossRefGoogle Scholar
  63. 63.
    Garcia-Garcia HM, Serruys PW, Campos CM, Muramatsu T, Nakatani S, Zhang YJ, Onuma Y, Stone GW (2014) Assessing bioresorbable coronary devices methods and parameters. JACC-Cardiovasc Imag 7(11):1130–1148. CrossRefGoogle Scholar
  64. 64.
    Charpentier E, Barna A, Guillevin L, Juliard JM (2015) Fully bioresorbable drug-eluting coronary scaffolds: a review. Arch Cardiovasc Dis 108(6–7):385–397. CrossRefGoogle Scholar
  65. 65.
    Bourantas CV, Zhang Y, Farooq V, Garcia-Garcia HM, Onuma Y, Serruys PW (2012) Bioresorbable scaffolds: current evidence and ongoing clinical trials. Curr Cardiol Rep 14(5):626–634. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringTexas A&M University at Qatar, Education CityDohaQatar
  2. 2.SIDRA MedicineDohaQatar
  3. 3.Mechanical EngineeringTexas A&M University at Qatar Education CityDohaQatar

Personalised recommendations