Corrosion Inhibition of Ordinary Steel in 5.0 M HCl Medium by Benzimidazole Derivatives: Electrochemical, UV–Visible Spectrometry, and DFT Calculations

  • O. FergachiEmail author
  • F. Benhiba
  • M. Rbaa
  • M. Ouakki
  • M. Galai
  • R. Touir
  • B. Lakhrissi
  • H. Oudda
  • M. Ebn Touhami


In the present work, a new organic inhibitor, namely (2(-4(chloro phenyl-1H-benzo[d]imidazol)-1-yl)phenyl) methanone (CBIPM), that has an inhibitive effect on the ordinary steel corrosion in 5.0 M HCl has been studied using electrochemical measurements (potentiodynamic polarization and electrochemical impedance spectroscopy). The obtained results showed that the inhibition efficiency increased with concentration and reached 98.6% at 10−3 M. In addition, the CBIPM takes its performance at the temperature range of 298–328 K. The adsorption of the inhibitor on the ordinary steel was well described by the Langmuir isotherm. On the other hand, the establishing of correlation between the molecular structures of quantum chemistry indices was carried out using the density functional theory.


Imidazol Ordinary steel Corrosion inhibition Acidic medium UV–visible spectroscopy DFT 


  1. 1.
    Amin MA, Khaled KF, Mohsen Q, Arida HA (2010) A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corros Sci 52(5):1684–1695.Google Scholar
  2. 2.
    Khaled KF (2003) The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions. Electrochim Acta 48(17):2493–2503.Google Scholar
  3. 3.
    El-Sayed A (1997) Phenothiazine as inhibitor of the corrosion of cadmium in acidic solutions. J Appl Electrochem 27(2):193–200.Google Scholar
  4. 4.
    Galai M, Rbaa M, Kacimi E, Ouakki Y, Dkhirech M, Touir N, Touhami R (2017) Anti-corrosion properties of some triphenylimidazole substituted compounds in corrosion inhibition of carbon steel in 1.0 M hydrochloric acid solution. Anal Bioanal Electrochem, 9(1), 80–101.Google Scholar
  5. 5.
    Barouni K, Kassale A, Albourine A, Jbara O, Hammouti B, Bazzi L (2014) Amino acids as corrosion inhibitors for copper in nitric acid medium: experimental and theoretical study. J Mater Environ Sci 5(2):456–463.Google Scholar
  6. 6.
    Schmitt G (1984) Application of inhibitors for acid media: report prepared for the European federation of corrosion working party on inhibitors. Br Corros J 19(4):165–176.Google Scholar
  7. 7.
    El-Rehim SA, Ibrahim MA, Khaled KF (1999) 4-Aminoantipyrine as an inhibitor of mild steel corrosion in HCl solution. J Appl Electrochem 29(5):593–599.Google Scholar
  8. 8.
    Li XH, Deng SD, Fu H (2011) Adsorption and inhibitive action of hexadecylpyridinium bromide on steel in phosphoric acid produced by dihydrate wet method process. J Appl Electrochem 41(5):507–517.Google Scholar
  9. 9.
    Ech-chihbi E, Salim R, Oudda H, Elaatiaoui A, Rais Z, Oussaid A, Taleb M (2016) Effect of some imidazopyridine compounds on carbon steel corrosion in hydrochloric acid solution. Der Pharm Chem 8(13):214–230.Google Scholar
  10. 10.
    Ech-chihbi E, Belghiti ME, Salim R, Oudda H, Taleb M, Benchat N, El-Hajjaji F (2017) Experimental and computational studies on the inhibition performance of the organic compound “2-phenylimidazo [1,2-a]pyrimidine-3-carbaldehyde” against the corrosion of carbon steel in 1.0 M HCl solution. Surf Interf 9:206–217.Google Scholar
  11. 11.
    Dkhireche N, Galai M, Kacimi E, Rbaa Y, Ouakki M, Lakhrissi M, Ebn B, Touhami M (2018) New quinoline derivatives as sulfuric acid inhibitor’s for mild steel. Anal Bioanal Electrochem 10(1):111–135.Google Scholar
  12. 12.
    Rbaa M, Galai M, Kacimi E, Ouakki Y, Touir M, Lakhrissi R, Touhami B, M. E (2017) Adsorption properties and inhibition of carbon steel corrosion in a hydrochloric solution by 2-(4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl)-5-methoxyphenol. Portug Electrochim Acta 35(6):323–338.Google Scholar
  13. 13.
    Alaoui K, Touir R, Galai M, Serrar H, Ouakki M, Kaya S, El Kacimi Y (2018) Electrochemical and computational studies of some triazepine carboxylate compounds as acid corrosion inhibitors for mild steel. J Bio Tribo Corr 4(3):37.Google Scholar
  14. 14.
    Kertit S, Hammouti B (1996) Corrosion inhibition of iron in 1 M HCl by 1-phenyl-5-mercapto-1,2,3,4-tetrazole. Appl Surf Sci 93(1):59–66.Google Scholar
  15. 15.
    Essoufi H, Kertit S, Hammout B, Benkaddour M (2000) 1-Phenyl-5-mercapto-1,2,3,4-tetrazole (PMT) as corrosion inhibitor for nickel in sulphuric acid solution. Bull Electrochem 16(5):205–208.Google Scholar
  16. 16.
    Growcock FB, Frenier WW, Andreozzi PA (1989) Inhibition of steel corrosion in HCl by derivatives of cinnamaldehyde: Part II. Structure–activity correlations. Corrosion 45(12):1007–1015.Google Scholar
  17. 17.
    Lukovits I, Kalman E, Palinkas G (1995) Nonlinear group-contribution models of corrosion inhibition. Corrosion 51(3):201–205.Google Scholar
  18. 18.
    Bentiss F, Lagrenee M, Traisnel M, Mernari B, Elattari H (1999) A simple one step synthesis of new 3,5-disubstituted-4-amino-1,2,4-triazoles. J Heterocyclic Chem 36(1):149–152.Google Scholar
  19. 19.
    Bentiss F, Lagrenee M, Traisnel M, Hornez JC (1999) The corrosion inhibition of mild steel in acidic media by a new triazole derivative. Corros Sci 41(4):789–803.Google Scholar
  20. 20.
    Bouckamp A, Users manual equivalent circuit, Ver. 4.51 (1993).Google Scholar
  21. 21.
    El Hezzat M, Assouag M, Zarrok H, Benzekri Z, El Assyry A, Boukhris S, Oudda H (2015) Correlated DFT and electrochemical study on inhibition behavior of ethyl 6-amino-5-cyano-2-methyl-4-(p-tolyl)-4H-pyran-3-carboxylate for the corrosion of mild steel in HCl. Der Pharm Chem 7(10):77–88.Google Scholar
  22. 22.
    El Aoufir Y, Lgaz H, Bourazmi H, Kerroum Y, Ramli Y, Guenbour A, Oudda H (2016) Quinoxaline derivatives as corrosion inhibitors of carbon steel in hydrochloridric acid media: electrochemical, DFT and Monte Carlo simulations studies. J Mater Environ Sci 7(12):4330–4347.Google Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Millam JM (2003) Gaussian 03, Revision B. 03. Gaussian, Pittsburgh.Google Scholar
  24. 24.
    Petersson A, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89(4):2193–2218.Google Scholar
  25. 25.
    Ansari KR, Quraishi MA (2015) Experimental and quantum chemical evaluation of Schiff bases of isatin as a new and green corrosion inhibitors for mild steel in 20% H2SO4. J Taiwan Inst Chem Eng 54:145–154.Google Scholar
  26. 26.
    Neese F (2012) An Ab ini tio, DFT and semiempirical SCF-MO package. Max-Plank Institute for Bioinorganic Chemistry, Mülheim ad Ruhr.Google Scholar
  27. 27.
    Becke AD (1986) Density functional calculations of molecular bond energies. J Chem Phys 84(8):4524–4529.Google Scholar
  28. 28.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785.Google Scholar
  29. 29.
    Saha SK, Hens A, RoyChowdhury A, Lohar AK, Murmu NC, Banerjee P (2014) Molecular dynamics and density functional theory study on corrosion inhibitory action of three substituted pyrazine derivatives on steel surface. Can Chem Trans 2(4):489–503.Google Scholar
  30. 30.
    Saha SK, Ghosh P, Hens A, Murmu NC, Banerjee P (2015) Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Phys E 66:332–341.Google Scholar
  31. 31.
    Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20(1):129–154.Google Scholar
  32. 32.
    Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27(4):734–740.Google Scholar
  33. 33.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516.Google Scholar
  34. 34.
    Lukovits I, Kalman E, Zucchi F (2001) Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion 57(1):3–8.Google Scholar
  35. 35.
    Shukla SK, Quraishi MA (2009) 4-Substituted anilinomethylpropionate: new and efficient corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci 51(9):1990–1997.Google Scholar
  36. 36.
    Benali O, Larabi L, Traisnel M, Gengembre L, Harek Y (2007) Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1 M HClO4. Appl Surf Sci 253(14):6130–6139.Google Scholar
  37. 37.
    Quraishi MA, Rawat J (2000) Corrosion inhibition of mild steel in acid solutions by tetramethyl-dithia-octaazacyclotetradeca hexaene (MTAT). Anti Corr Methods Mater 47(5):288–293.Google Scholar
  38. 38.
    Lagrenee M, Mernari B, Bouanis M, Traisnel M, Bentiss F (2002) Study of the mechanism and inhibiting efficiency of 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole on mild steel corrosion in acidic media. Corros Sci 44(3):573–588.Google Scholar
  39. 39.
    El Makrini B, Larouj M, Lgaz H, Salghi R, Salman A, Belkhaouda M, Oudda H ISSN 0975-413X CODEN (USA): PCHHAX.Google Scholar
  40. 40.
    El Makrini B, Lgaz H, Larouj M, Salghi R, Hasan AR, Belkhaouda M, Oudda H (2016) The inhibition performance of sulfamerazine for corrosion of mild steel in HCl. Der Pharma Chem 8(2):256–268.Google Scholar
  41. 41.
    Tsuru T, Haruyama S, Gijutsu B (1978) Corrosion inhibition of iron by amphoteric surfactants in 2 M HCl. J Jpn Soc Corros Eng 27:573–581.Google Scholar
  42. 42.
    Tang Y, Zhang F, Hu S, Cao Z, Wu Z, Jing W (2013) Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: gravimetric, electrochemical, SEM and XPS studies. Corr Sci 74:271–282.Google Scholar
  43. 43.
    Hegazy MA, Badawi AM, Rehim E, Kamel SA, W. M (2013) Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy) ethyl)-N,N-dimethyl dodecan-1-aminium bromide during acid pickling. Corros Sci 69:110–122.Google Scholar
  44. 44.
    Shivakumar SS, Mohana KN (2013) Corrosion behavior and adsorption thermodynamics of some Schiff bases on mild steel corrosion in industrial water medium. Int J Corr 2013:8207.Google Scholar
  45. 45.
    Methal A, Koulou A, El Bakri M, Touhami ME, Galai M, Lakhrissi M, Bakkali S Green approach to corrosion inhibition of mild steel in 1 M HCl solutions by Monosaccharides derivatives. Maghreb J Pure Appl Sci 1(2), 46–61.Google Scholar
  46. 46.
    Oguzie EE (2007) Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corr Sci 49(3):1527–1539.Google Scholar
  47. 47.
    Martinez S, Stern I (2002) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system. Appl Surf Sci 199(1–4):83–89.Google Scholar
  48. 48.
    Benabdellah M, Aouniti A, Dafali A, Hammouti B, Benkaddour M, Yahyi A, Ettouhami A (2006) Investigation of the inhibitive effect of triphenyltin 2-thiophene carboxylate on corrosion of steel in 2 M H3PO4 solutions. Appl Surf Sci 252(23):8341–8347.Google Scholar
  49. 49.
    Noor EA, Al-Moubaraki AH (2008) Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4′(-X)-styryl pyridinium iodides/hydrochloric acid systems. Mater Chem Phys 110(1):145–154.Google Scholar
  50. 50.
    Subramanyam NC, Mayanna SM (1985) Azoles as corrosion inhibitors for mild steel in alkaline mine water. Corr Sci 25(3):163–169.Google Scholar
  51. 51.
    Eldakar N (1981) Ken Nobe. Corrosion 36:271.Google Scholar
  52. 52.
    Kurosawa K, Fukushima T (1989) Effects of pH of an Na2MoO4-H3PO4 type aqueous solution on the formation of chemical conversion coatings on steels. Corr Sci 29(9):1103–1114.Google Scholar
  53. 53.
    Kuznetsov YI (2001) Corrosion inhibitors in conversion coatings. III. Protect Metals 37(2):101–107.Google Scholar
  54. 54.
    Deng S, Li X, Fu H (2011) Acid violet 6B as a novel corrosion inhibitor for cold rolled steel in hydrochloric acid solution. Corros Sci 53(2):760–768.Google Scholar
  55. 55.
    Adardour L, Lgaz H, Salghi R, Larouj M, Jodeh S, Zougagh M, Taleb M (2016) Corrosion inhibition of steel in phosphoric acid by sulfapyridine experimental and theoretical studies. Der Pharm Lett 8(4):173–185.Google Scholar
  56. 56.
    Migahed MA (2005) Electrochemical investigation of the corrosion behaviour of mild steel in 2 M HCl solution in presence of 1-dodecyl-4-methoxy pyridinium bromide. Mater Chem Phys 93(1):48–53.Google Scholar
  57. 57.
    Ahamad I, Prasad R, Quraishi MA (2010) Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions. Corr Sci 52(3):933–942.Google Scholar
  58. 58.
    Ehteram A, Aisha H (2008) Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4 [40(-X)-styryl pyridinium iodides/hydrochloric acid systems. Mater Chem Phys 110:145–154.Google Scholar
  59. 59.
    Abboud Y, Abourriche A, Saffaj T, Berrada M, Charrouf M, Bennamara A, Hannache H (2007) 2,3-Quinoxalinedione as a novel corrosion inhibitor for mild steel in 1 M HCl. Mater Chem Phys 105(1):1–5.Google Scholar
  60. 60.
    Goel R, Siddiqi WA, Ahmed B, Khan MS, Chaubey VM (2010) Synthesis characterization and corrosion inhibition efficiency of N-C2{(2E)-2-[4-(dimethylamino) benzylidene]hydrazinyl}2-oxo ethyl benzamide on mild steel. Desalination 263(1–3):45–57.Google Scholar
  61. 61.
    Alaa SA, Ayman A (2006) El-Fetouh. Gouda., Ragaa, El-Sheikh., Faten, Zahran. Spectrochim Acta A Mol Biomol Spectrosc 2006:14–171.Google Scholar
  62. 62.
    Anacona JR, Martell T, Sanchez I (2005) Metal complexes of a new ligand derived from 2,3-quinoxalinedithiol and 2,6-bis(bromomethyl)pyridine. J Chil Chem Soc 50(1):375–378.Google Scholar
  63. 63.
    Efil K, Bekdemir Y (2015) Theoretical study on corrosion inhibitory action of some aromatic imines with sulphanilic acid: A DFT study. Can Chem Trans 3(1):85–93.Google Scholar
  64. 64.
    Wang H, Wang X, Wang H, Wang L, Liu A (2007) DFT study of new bipyrazole derivatives and their potential activity as corrosion inhibitors. J Mol Model 13(1):147–153.Google Scholar
  65. 65.
    Yıldız R (2015) An electrochemical and theoretical evaluation of 4,6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corros Sci 90:544–553.Google Scholar
  66. 66.
    Al Hamzi AH, Zarrok H, Zarrouk A, Salghi R, Hammouti B, Al-Deyab SS, Guenoun F (2013) The role of acridin-9(10H)-one in the inhibition of carbon steel corrosion: thermodynamic, electrochemical and DFT studies. Int J Electrochem Sci 8:2586–2605.Google Scholar
  67. 67.
    Ramya K, Mohan R, Joseph A (2014) Adsorption and electrochemical studies on the synergistic interaction of alkyl benzimadazoles and ethylene thiourea pair on mild steel in hydrochloric acid. J Taiwan Inst Chem Eng 45(6):3021–3032.Google Scholar
  68. 68.
    Al-Azawi KF, Al-Baghdadi SB, Mohamed AZ, Al-Amiery AA, Abed TK, Mohammed SA, Mohamad AB (2016) Synthesis, inhibition effects and quantum chemical studies of a novel coumarin derivative on the corrosion of mild steel in a hydrochloric acid solution. Chem Cent J 10(1):23.Google Scholar
  69. 69.
    Obi-Egbedi NO, Essien KE, Obot IB, Ebenso EE (2011) 1,2-Diaminoanthraquinone as corrosion inhibitor for mild steel in hydrochloric acid: weight loss and quantum chemical study. Int J Electrochem Sci 6:913–930.Google Scholar
  70. 70.
    Özcan M, Dehri I, Erbil M (2004) Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure. Appl Surf Sci 236(1–4):155–164.Google Scholar
  71. 71.
    Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108(19):5708–5711.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • O. Fergachi
    • 1
    Email author
  • F. Benhiba
    • 5
  • M. Rbaa
    • 2
  • M. Ouakki
    • 3
  • M. Galai
    • 1
  • R. Touir
    • 4
  • B. Lakhrissi
    • 2
  • H. Oudda
    • 5
  • M. Ebn Touhami
    • 1
  1. 1.Laboratory of Materials Engineering and Environment: Modeling and Application, Faculty of ScienceUniversity Ibn TofailKenitraMorocco
  2. 2.Laboratory Agro-Resources, Polymers and Process Engineering, Department of Chemistry, Faculty of SciencesIbn Tofail UniversityKénitraMorocco
  3. 3.Laboratory of Materials, Electrochemistry and Environment, Faculty of ScienceIbn Tofail UniversityKenitraMorocco
  4. 4.Regional Center for Education and TrainingRabatMorocco
  5. 5.Laboratory of separation processes, Faculty of ScienceUniversity Ibn TofailKenitraMorocco

Personalised recommendations