Corrosion Resistance of Niobium-Coated Carbon Steel

  • Paloma Detlinger
  • Brian Utri
  • Everson do Prado BanczekEmail author


In this work, the effectiveness of niobium coatings for the corrosion protection of carbon steel was studied. Three niobium resins, containing different molar proportions of citric acid:ethylene glycol, were coated separately onto samples of carbon steel (SAE 1020). The niobium layers were obtained by the polymeric precursor method (Pechini). Potentiodynamic polarization curves (anodic and cathodic) and electrochemical impedance spectroscopy were used to evaluate the corrosion resistance of the niobium-coated carbon steel samples in a 0.5 mol L−1 NaCl electrolyte solution. X-ray diffraction analysis of the niobium layers showed that they are composed of the niobates: NbO, NbO2 and Fe0.998Nb0.002. Surface observation by scanning electron microscopy revealed a uniformly deposited niobium coating on the surface. The electrochemical results showed that niobium was effective in the corrosion protection of the carbon steel substrate. The results also suggested that niobium can be coated onto the substrate to form a layer with advantageous corrosion properties.


Pechini method Corrosion Niobium ammonium oxalate 



The authors are grateful for FUNDAÇÃO ARAUCÁRIA financial support provided to this research and also for CBMM for the Nb2O5 used in this study. This study was financed in part by the Coordnação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.


  1. 1.
    Roberge PR, Pierre R (1999) Handbook of corrosion engineering library of congress cataloging-in-publication data. Mac Graw-Hill, New YorkGoogle Scholar
  2. 2.
    Olivares-Navarrete R, Olaya JJ, Ramírez C (2011) Biocompatibility of niobium coatings. Coatings 1:72–87CrossRefGoogle Scholar
  3. 3.
    Lima OJ, De Nassar EJ (2002) Testes de biocompatibilidade, aplicação e obtenção de novos materiais a partir do Nióbio. 25 Reunião Anual da Sociedade Brasileira de Química, vol 1, p 2–3Google Scholar
  4. 4.
    Yu J, Wen H, Shafiei M, Field MR, Liu ZF, Wlodarski W, Motta N, Li YX, Kalantar-Zadeh K, Lai PT (2013) A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesised by hydrothermal method. Sens Actuators B 184:118–129CrossRefGoogle Scholar
  5. 5.
    Gong P, Palmiere EJ, Rainforth WM (2015) Dissolution and precipitation behaviour in steels microalloyed with niobium during thermomechanical processing. Acta Mater 97:392–403CrossRefGoogle Scholar
  6. 6.
    Boukriba M, Sediri F (2014) Hydrothermal synthesis and characterization of poly(paraphenylenediamine)/Nb2O5 core–shell composite. Ceram Int 40:8499–8505CrossRefGoogle Scholar
  7. 7.
    Kong F, Jiao G, Wang J, Tao S, Han Z, Fang Y, Yang G, Zhang L, Qian B (2017) Co-precipitation synthesis and electrochemical properties of CrNbO4 anode materials for lithium-ion batteries. Mater Lett 196:335–338CrossRefGoogle Scholar
  8. 8.
    Deblonde GJ, Chagnes A, Weigel V, Cote G (2016) Direct precipitation of niobium and tantalum from alkaline solutions using calcium-bearing reagents. Hydrometallurgy 165:345–350CrossRefGoogle Scholar
  9. 9.
    Aegerter MA (2001) Sol-gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Sol Energy Mater Sol Cells 68(3–4):401–422CrossRefGoogle Scholar
  10. 10.
    Martínez DT, Pérez RC, Delgado GT, Ángel OZ (2012) Structural, morphological, optical and photocatalytic characterization of ZnO–SnO2 thin films prepared by the sol–gel technique. J Photochem Photobiol A 235:49–55CrossRefGoogle Scholar
  11. 11.
    Graça MPF, Meireles A, Nico C, Valente MA (2013) Nb2O5 nanosize powders prepared by sol–gel—structure, morphology and dielectric properties. J Alloys Compd 553:177–182CrossRefGoogle Scholar
  12. 12.
    Duta M, Predoana L, Calderon MJM, Preda S, Anastasescu M, Marin A, Dascalu I, Chesler P, Hornoiu C, Zaharescu M, Osiceanu P, Gartner M (2016) Nb-doped TiO2 sol-gel films for CO sensing applications. Mater Sci Semicond Process 42:397–404CrossRefGoogle Scholar
  13. 13.
    Lu Y, Khan S, Song CL, Wang KK, Yuan GZ, Li W, Han GR, Liu Y (2016) Doping concentration effects upon column-structured Nb:TiO2 for transparent conductive thin films prepared by a sol–gel method. J Alloys Compd 663:413–418CrossRefGoogle Scholar
  14. 14.
    Lazarova K, Vasileva M, Marinov G, Babeva T (2014) Optical characterization of sol-gel derived Nb2O5 thin films. Opt Laser Technol 58:114–118CrossRefGoogle Scholar
  15. 15.
    Viomar A, Maia GA, Scremin FR, Khalil NM, da Cunha MT, Antunes AC, Rodrigues PRP (2016) Influence of obtaining method of Nb2O5 particles used in dye sensitized solar cells consisting of TiO2/Nb2O5. Revista Virtual de Química 8(3):889–900Google Scholar
  16. 16.
    Rosario AV, Pereira EC (2006) The effect of composition variables on precursor degradation and their consequence on Nb2O5 film properties prepared by the Pechini method. J Sol-Gel Sci Technol 38(3):233–240CrossRefGoogle Scholar
  17. 17.
    Herval LKS, Dreifus von D, Rabelo AC, Rodrigues AD, Pereira EC, Gobato YG, Oliveira AJA, Godoy MPF (2015) The role of defects on the structural and magnetic properties of Nb2O5. J Alloy Compd 653:358–362CrossRefGoogle Scholar
  18. 18.
    Lustosa GMMM, Costa JPC, Perazolli LA, Stojanovic BD, Zaghete MA (2015) Electrophoretic deposition of (Zn, Nb)SnO2-films varistor superficially modified with Cr3+. J Eur Ceram Soc 35(7):2083–2089CrossRefGoogle Scholar
  19. 19.
    Pechini M (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent 3,330,697Google Scholar
  20. 20.
    Li W, Li J, Wang X, Ma J, Chen Q (2010) Effect of citric acid on photoelectrochemical properties of tungsten trioxide films prepared by the polymeric precursor method. Appl Surf Sci. CrossRefGoogle Scholar
  21. 21.
    Graça MPF, Meireles A, Nico C, Valente MA (2013) Nb2O5 nanosize powders prepared by sol-gel-structure, morphology and dielectric properties, J. Alloys Compd. CrossRefGoogle Scholar
  22. 22.
    Huízar-Félix AM, Hernández T, de la Parra S, Ibarra J, Kharisov B (2012) Sol-gel based Pechini method synthesis and characterization of Sm1-xCaxFeO3 perovskite 0.1 ≤ x ≤ 0.5. Powder Technol 229:290–293CrossRefGoogle Scholar
  23. 23.
    Martins ML, Florentino AO, Cavalheiro AA, Silva RIV, Dos Santos DI, Saeki MJ (2014) Mechanisms of phase formation along the synthesis of Mn-Zn ferrites by the polymeric precursor method. Ceram. Int 40:16023–16031CrossRefGoogle Scholar
  24. 24.
    Ribeiro PC, de Melo da Costa ACF, Kiminami RHGA, Sasaki JM, Lira HL (2013) Synthesis of TiO2 by the pechini method and photocatalytic degradation of methyl red. Mater Res 16:468–472CrossRefGoogle Scholar
  25. 25.
    Trino LD, Dias LFG, Albano LGS, Bronze-Uhle ES, Rangel EC, Graeff CFO, Lisboa-Filho PN (2018) Zinc oxide surface functionalization and related effects on corrosion resistance of titanium implants. Ceram Int 44:4000–4008CrossRefGoogle Scholar
  26. 26.
    Costa M, Lira H (2014) Effect of calcination temperature on the structural characteristics and morphology of aluminas synthesized by the Pechini. Materia 19:171–182Google Scholar
  27. 27.
    Raba AM, Bautista-Ruíz J, Joya MR (2016) Synthesis and structural properties of niobium pentoxide powders: a comparative study of the growth process. Mater Res. CrossRefGoogle Scholar
  28. 28.
    Orjuela GA, Rincón R, Olaya JJ (2014) Corrosion resistance of niobium carbide coatings produced on AISI 1045 steel via thermo-reactive diffusion deposition. Surf Coat Technol 259:667–675CrossRefGoogle Scholar
  29. 29.
    Fernandes FA, Gallego J, Picon CA, Tremiliosi Filho G, Casteletti LC (2015) Wear and corrosion of niobium carbide coated AISI 52100 bearing steel. Surf Coat Technol 279:112–117CrossRefGoogle Scholar
  30. 30.
    Nico C, Monteiro T, Graça MPF (2016) Niobium oxides and niobates physical properties: review and prospects. J Prog Mater Sci 80:1–37CrossRefGoogle Scholar
  31. 31.
    Galceran M, Pujol MC, Aguiló M, Díaz F (2007) Sol-gel modified Pechini method for obtaining nanocrystalline KRE(WO4)2 (RE = Gd and Yb). J Sol-Gel Sci Technol 42(1):79–88CrossRefGoogle Scholar
  32. 32.
    Tussolini M (2013) Caracterização das camadas de Nb2O5 na ausência ou presença de nanotubo de carbono e/ou carbeto de silício na superfície da liga de alummínio AA3003. Tese de Doutorado. Universidade Estadual do Centro OesteGoogle Scholar
  33. 33.
    Castillejo FE, Marulanda DM, Olaya JJ, Alfonso JE (2014) Wear and corrosion resistance of niobium-chromium carbide coatings on AISI D2 produced through TRD. Surf Coat Technol 254:104–111CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade Estadual do Centro-Oeste, UNICENTROGuarapuavaBrazil

Personalised recommendations