Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Behavioral Economic Analysis of Demand for Texting while Driving

Abstract

The overarching goal of the present study was to determine whether a behavioral economic framework of demand analysis is applicable to texting while driving. To this end, we developed a novel hypothetical task in which participants receive a text message while driving, and they rated the likelihood of replying to a text message immediately versus waiting to reply until arriving at a destination when the fine for texting while driving ranged from $1 to $300. The scenario presented two delays to a destination (15 min and 60 min). For drivers who self-reported a higher frequency of texting while driving the demand for social interaction from texting was more intense and less elastic. Demand was also more intense and less elastic under the 60-min delay condition. The results of this proof-of-concept study suggest that behavioral economic demand analyses are potentially useful for understanding and predicting texting while driving.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.

Notes

  1. 1.

    The term “increased” is used to indicate the change in the probability of a motor vehicle crash due to texting while driving from the basal probability of a crash due to driving without texting. Note that the consequences of interest here concern only texting behavior. Therefore, the basal probability of a crash (by itself) is not referenced in our description for the sake of simplicity.

  2. 2.

    It is important to note that the exponent of 1.5 in Eq. 2 was determined for Hursh and Silberberg's (2008) exponential demand equation, and an equivalent for Koffarnus et al.’s (2015) exponentiated equation has not been determined yet. In this study, we use the exponent of 1.5 in calculating EV’s because our primary focus is to compare the groups and conditions within this study, but the readers are cautioned that the absolute values of the EV’s in the present study may not be appropriate for comparisons across studies.

References

  1. AAA Foundation for Traffic Safety. (2017). 2016 traffic safety culture index. Retrieved from https://www.aaafoundation.org/sites/default/files/2016TrafficSafetyCultureIndexReportandCover_0.pdf

  2. Amlung, M., & MacKillop, J. (2015). Further evidence of close correspondence for alcohol demand decision making for hypothetical and incentivized rewards. Behavioural Processes, 113, 187–191. https://doi.org/10.1016/j.beproc.2015.02.012.

  3. Amlung, M. T., Acker, J., Stojek, M. K., Murphy, J. G., & MacKillop, J. (2012). Is talk “cheap”? An initial investigation of the equivalence of alcohol purchase task performance for hypothetical and actual rewards. Alcoholism: Clinical and Experimental Research, 36, 716–724. https://doi.org/10.1111/j.1530-0277.2011.01656.x.

  4. Atance, C. M., & O’Neill, D. K. (2001). Episodic future thinking. Trends in Cognitive Sciences, 533–539. https://doi.org/10.1016/S1364-6613(00)01804-0.

  5. Atchley, P., Atwood, S., & Boulton, A. (2011). The choice to text and drive in younger drivers: Behavior may shape attitude. Accident Analysis & Prevention, 43, 134–142. https://doi.org/10.1016/j.aap.2010.08.003.

  6. Becirevic, A., Reed, D. D., Amlung, M., Murphy, J. G., Stapleton, J. L., & Hillhouse, J. J. (2017). An initial study of behavioral addiction symptom severity and demand for indoor tanning. Experimental and Clinical Psychopharmacology, 25, 346–352. https://doi.org/10.1037/pha0000146.

  7. Beeli, G., Koeneke, S., Gasser, K., & Jancke, L. (2008). Brain stimulation modulates driving behavior. Behavioral and Brain Functions, 4(34). https://doi.org/10.1186/1744-9081-4-34.

  8. Bickel, W. K., Jarmolowicz, D. P., Mueller, E. T., & Gatchalian, K. M. (2011). The behavioral economics and neuroeconomics of reinforcer pathologies: Implications for etiology and treatment of addiction. Current Psychiatry Reports, 13, 406–415. https://doi.org/10.1007/s11920-011-0215-1.

  9. Bickel, W. K., Johnson, M. W., Koffarnus, M. N., MacKillop, J., & Murphy, J. G. (2014). The behavioral economics of substance use disorders: Reinforcement pathologies and their repair. Annual Review of Clinical Psychology, 10, 641–677. https://doi.org/10.1146/annurev-clinpsy-032813-153724.

  10. Bickel, W. K., Stein, J. S., Moody, L. N., Snider, S. E., Mellis, A. M., & Quisenberry, A. J. (2017). Toward narrative theory: Interventions for reinforcer pathology in health behavior. In J. R. Stevens (Ed.), Impulsivity (pp. 227–267). New York, NY: Springer. https://doi.org/10.1007/978-3-319-51721-6_8.

  11. Broadbent, J., & Dakki, M. A. (2015). How much is too much to pay for internet access? A behavioral economic analysis of internet use. Cyberpsychology, Behavior and Social Networking, 18, 457–461. https://doi.org/10.1089/cyber.2014.0367.

  12. Bruner, N. R., & Johnson, M. W. (2014). Demand curves for hypothetical cocaine in cocaine-dependent individuals. Psychopharmacology, 231, 889–897. https://doi.org/10.1007/s00213-013-3312-5.

  13. Bulley, A., & Gullo, M. J. (2017). The influence of episodic foresight on delay discounting and demand for alcohol. Addictive Behaviors, 66, 1–6. https://doi.org/10.1016/j.addbeh.2016.11.003.

  14. Chase, H. W., MacKillop, J., & Hogarth, L. (2013). Isolating behavioural economic indices of demand in relation to nicotine dependence. Psychopharmacology, 226, 371–380. https://doi.org/10.1007/s00213-012-2911-x.

  15. Cismaru, M., & Nimegeers, K. (2017). “Keep your eyes up, don’t text and drive”: A review of anti-texting while driving campaigns’ recommendations. International Review on Public & Nonprofit Marketing, 14, 113–135. https://doi.org/10.1007/s12208-016-0166-7.

  16. Daniel, T. O., Stanton, C. M., & Epstein, L. H. (2013a). The future is now: Comparing the effect of episodic future thinking on impulsivity in lean and obese individuals. Appetite, 71, 120–125. https://doi.org/10.1016/j.appet.2013.07.010.

  17. Daniel, T. O., Stanton, C. M., & Epstein, L. H. (2013b). The future is now: Reducing impulsivity and energy intake using episodic future thinking. Psychological Science, 24, 2339–2342. https://doi.org/10.1177/0956797613488780.

  18. Delgado, M. K., Wanner, K. J., & McDonald, C. (2016). Adolescent cellphone use while driving: An overview of the literature and promising future directions for prevention. Media and Communication, 4, 79–89. https://doi.org/10.17645/mac.v4i3.536.

  19. Epstein, L. H., Dearing, K. K., Roba, L. G., & Finkelstein, E. (2010). The influence of taxes and subsidies on energy purchased in an experimental purchasing study. Psychological Science, 21, 406–414. https://doi.org/10.1177/0956797610361446.

  20. Epstein, L. H., Salvy, S. J., Carr, K. A., Dearing, K. K., & Bickel, W. K. (2010). Food reinforcement, delay discounting and obesity. Physiology & Behavior, 100, 438–445. https://doi.org/10.1016/j.physbeh.2010.04.029.

  21. Governors Highway Safety Association. (2018). Distracted driving laws by state. Retrieved from https://www.ghsa.org/sites/default/files/2018-04/DistractedDrivingLawChart_Apr18.pdf

  22. Grace, R. C., Kivell, B. M., & Laugesen, M. (2015). Estimating cross-price elasticity of e-cigarettes using a simulated demand procedure. Nicotine & Tobacco Research, 17, 592–598. https://doi.org/10.1093/ntr/ntu268.

  23. Hayashi, Y., Fessler, H. J., Friedel, J. E., Foreman, A. M., & Wirth, O. (2018). The roles of delay and probability discounting in texting while driving: Toward the development of a translational scientific program. Journal of the Experimental Analysis of Behavior, 110, 229–242.

  24. Hayashi, Y., Foreman, A. M., Friedel, J. E., & Wirth, O. (2018). Executive function and dangerous driving behaviors in young drivers. Transportation Research Part F: Traffic Psychology & Behaviour, 52, 51–61. https://doi.org/10.1016/j.trf.2017.11.007.

  25. Hayashi, Y., Miller, K., Foreman, A. M., & Wirth, O. (2016). A behavioral economic analysis of texting while driving: Delay discounting processes. Accident Analysis & Prevention, 97, 132–140. https://doi.org/10.1016/j.aap.2016.08.028.

  26. Hayashi, Y., Rivera, E. A., Modico, J. G., Foreman, A. M., & Wirth, O. (2017). Texting while driving, executive function, and impulsivity in college students. Accident Analysis & Prevention, 102, 72–80. https://doi.org/10.1016/j.aap.2017.02.016.

  27. Hayashi, Y., Russo, C. T., & Wirth, O. (2015). Texting while driving as impulsive choice: A behavioral economic analysis. Accident Analysis & Prevention, 83, 182–189. https://doi.org/10.1016/j.aap.2015.07.025.

  28. He, J., Chaparro, A., Nguyen, B., Burge, R. J., Crandall, J., Chaparro, B., . . . Cao, S. (2014). Texting while driving: Is speech-based text entry less risky than handheld text entry? Accident Analysis & Prevention, 72, 287–295. https://doi.org/10.1016/j.aap.2014.07.014

  29. Houben, K., Nederkoorn, C., Wiers, R. W., & Jansen, A. (2011). Resisting temptation: Decreasing alcohol-related affect and drinking behavior by training response inhibition. Drug and Alcohol Dependence, 116, 132–136. https://doi.org/10.1016/j.drugalcdep.2010.12.011.

  30. Hursh, S. R. (1980). Economic concepts for the analysis of behavior. Journal of the Experimental Analysis of Behavior, 34, 219–238. https://doi.org/10.1901/jeab.1980.34-219.

  31. Hursh, S. R. (1984). Behavioral economics. Journal of the Experimental Analysis of Behavior, 42, 435–452. https://doi.org/10.1901/jeab.1984.42-435.

  32. Hursh, S. R. (2014). Behavioral economics and the analysis of consumption and choice. In F. K. McSweeney & E. S. Murphy (Eds.), The Wiley Blackwell handbook of operant & classical conditioning (pp. 275–305). West Sussex, UK: Wiley.

  33. Hursh, S. R., & Roma, P. G. (2013). Behavioral economics and empirical public policy. Journal of the Experimental Analysis of Behavior, 99, 98–124. https://doi.org/10.1002/jeab.7.

  34. Hursh, S. R., & Silberberg, A. (2008). Economic demand and essential value. Psychological Review, 115, 186–198. https://doi.org/10.1037/0033-295X.115.1.186.

  35. Hursh, S. R., & Winger, G. (1995). Normalized demand for drugs and other reinforcers. Journal of the Experimental Analysis of Behavior, 64, 373–384. https://doi.org/10.1901/jeab.1995.64-373.

  36. Iacobucci, D., Posavac, S. S., Kardes, F. R., Schneider, M. J., & Popovich, D. L. (2015). Toward a more nuanced understanding of the statistical properties of a median split. Journal of Consumer Psychology, 25, 652–665. https://doi.org/10.1016/j.jcps.2014.12.002.

  37. Jacobs, E. A., & Bickel, W. K. (1999). Modeling drug consumption in the clinic using simulation procedures: Demand for heroin and cigarettes in opioid-dependent outpatients. Experimental and Clinical Psychopharmacology, 7, 412–426.

  38. Johnson, M. W., & Bickel, W. K. (2006). Replacing relative reinforcing efficacy with behavioral economic demand curves. Journal of the Experimental Analysis of Behavior, 85, 73–93. https://doi.org/10.1901/jeab.2006.102-04.

  39. Johnson, M. W., Johnson, P. S., Rass, O., & Pacek, L. R. (2017). Behavioral economic substitutability of e-cigarettes, tobacco cigarettes, and nicotine gum. Journal of Psychopharmacology, 31, 851–860. https://doi.org/10.1177/0269881117711921.

  40. Kaplan, B. A., Gelino, B. W., & Reed, D. D. (2018). A Behavioral economic approach to green consumerism: Demand for reusable shopping bags. Behavior & Social Issues, 27, 20–30. https://doi.org/10.5210/bsi.v27i0.8003.

  41. Kardefelt-Winther, D., Heeren, A., Schimmenti, A., van Rooij, A., Maurage, P., Carras, M., . . . Billieux, J. (2017). How can we conceptualize behavioural addiction without pathologizing common behaviours? Addiction, 112, 1709–1715. https://doi.org/10.1111/add.13763

  42. Klauer, S. G., Guo, F., Simons-Morton, B. G., Ouimet, M. C., Lee, S. E., & Dingus, T. A. (2014). Distracted driving and risk of road crashes among novice and experienced drivers. New England Journal of Medicine, 370, 54–59. https://doi.org/10.1056/NEJMsa1204142.

  43. Koffarnus, M. N., Franck, C. T., Stein, J. S., & Bickel, W. K. (2015). A modified exponential behavioral economic demand model to better describe consumption data. Experimental and Clinical Psychopharmacology, 23, 504–512. https://doi.org/10.1037/pha0000045.

  44. Koffarnus, M. N., & Kaplan, B. A. (2017). Clinical models of decision making in addiction. Pharmacology Biochemistry and Behavior, 164, 71–83. https://doi.org/10.1016/j.pbb.2017.08.010.

  45. MacKillop, J. (2016). The behavioral economics and neuroeconomics of alcohol use disorders. Alcoholism: Clinical and Experimental Research, 40, 672–685. https://doi.org/10.1111/acer.13004.

  46. MacKillop, J., Few, L. R., Murphy, J. G., Wier, L. M., Acker, J., Murphy, C., . . . Chaloupka, F. (2012). High-resolution behavioral economic analysis of cigarette demand to inform tax policy. Addiction, 107, 2191–2200. https://doi.org/10.1111/j.1360-0443.2012.03991.x

  47. MacKillop, J., Miranda, R., Monti, P. M., Ray, L. A., Murphy, J. G., Rohsenow, D. J., . . . Gwaltney, C. J. (2010). Alcohol demand, delayed reward discounting, and craving in relation to drinking and alcohol use disorders. Journal of Abnormal Psychology, 119, 106–114. https://doi.org/10.1037/a0017513

  48. MacKillop, J., & Murphy, J. G. (2007). A behavioral economic measure of demand for alcohol predicts brief intervention outcomes. Drug and Alcohol Dependence, 89, 227–233. https://doi.org/10.1016/j.drugalcdep.2007.01.002.

  49. MacKillop, J., Murphy, J. G., Ray, L. A., Eisenberg, D. T. A., Lisman, S. A., Lum, J. K., & Wilson, D. S. (2008). Further validation of a cigarette purchase task for assessing the relative reinforcing efficacy of nicotine in college smokers. Experimental and Clinical Psychopharmacology, 16, 57–65. https://doi.org/10.1037/1064-1297.16.1.57.

  50. Madden, G. J., & Bickel, W. K. (2010). Introduction. In G. J. Madden & W. K. Bickel (Eds.), Impulsivity: The behavioral and neurological science of discounting (pp. 3–8). Washington, DC: American Psychological Association.

  51. Madden, G. J., & Kalman, D. (2010). Effects of bupropion on simulated demand for cigarettes and the subjective effects of smoking. Nicotine & Tobacco Research, 12, 416–422. https://doi.org/10.1093/ntr/ntq018.

  52. Murphy, J. G., & MacKillop, J. (2006). Relative reinforcing efficacy of alcohol among college student drinkers. Experimental and Clinical Psychopharmacology, 14, 219–227. https://doi.org/10.1037/1064-1297.14.2.219.

  53. Murphy, J. G., MacKillop, J., Skidmore, J. R., & Pederson, A. A. (2009). Reliability and validity of a demand curve measure of alcohol reinforcement. Experimental and Clinical Psychopharmacology, 17, 396–404. https://doi.org/10.1037/a0017684.

  54. National Highway Traffic Safety Administration. (2017a). Distracted driving 2015. Retrieved from crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812381

  55. National Highway Traffic Safety Administration. (2017b). Distracted driving: U Drive. U Text. U Pay. Retrieved from https://www.trafficsafetymarketing.gov/get-materials/distracted-driving/u-drive-u-text-u-pay

  56. National Safety Council. (2013). Crashes involving cell phones: Challenges of collecting and reporting reliable crash data. Retrieved from http://www.nsc.org/DistractedDrivingDocuments/NSC-Under-Reporting-White-Paper.pdf

  57. National Safety Council. (2015). Annual estimate of cell phone crashes 2013. Retrieved from http://www.nsc.org/DistractedDrivingDocuments/CPK/Attributable-Risk-Summary.pdf

  58. Nederhof, A. J. (1985). Methods of coping with social desirability bias: A review. European Journal of Social Psychology, 15, 263–280. https://doi.org/10.1002/ejsp.2420150303.

  59. Reed, D. D., Kaplan, B. A., Becirevic, A., Roma, P. G., & Hursh, S. R. (2016). Toward quantifying the abuse liability of ultraviolet tanning: A behavioral economic approach to tanning addiction. Journal of the Experimental Analysis of Behavior, 106, 93–106. https://doi.org/10.1002/jeab.216.

  60. Roma, P. G., Hursh, S. R., & Hudja, S. (2016). Hypothetical purchase task questionnaires for behavioral economic assessments of value and motivation. Managerial and Decision Economics, 37, 306–323. https://doi.org/10.1002/mde.2718.

  61. Samuelson, P. A., & Nordhaus, W. D. (1985). Economics (12th ed.). New York, NY: McGraw-Hill.

  62. Sigurdsson, S. O., Taylor, M. A., & Wirth, O. (2013). Discounting the value of safety: Effects of perceived risk and effort. Journal of Safety Research, 46, 127–134. https://doi.org/10.1016/j.jsr.2013.04.006.

  63. Snider, S. E., LaConte, S. M., & Bickel, W. K. (2016). Episodic future thinking: Expansion of the temporal window in individuals with alcohol dependence. Alcoholism: Clinical and Experimental Research, 40, 1558–1566. https://doi.org/10.1111/acer.13112.

  64. Stein, J. S., Koffarnus, M. N., Snider, S. E., Quisenberry, A. J., & Bickel, W. K. (2015). Identification and management of nonsystematic purchase-task data: Towards best practice. Experimental and Clinical Psychopharmacology, 23, 377–386. https://doi.org/10.1037/pha0000020.

  65. Stein, J. S., Sze, Y. Y., Athamneh, L., Koffarnus, M. N., Epstein, L. H., & Bickel, W. K. (2017). Think fast: Rapid assessment of the effects of episodic future thinking on delay discounting in overweight/obese participants. Journal of Behavioral Medicine, 40, 832–838. https://doi.org/10.1007/s10865-017-9857-8.

  66. Stein, J. S., Tegge, A. N., Turner, J. K., & Bickel, W. K. (2018). Episodic future thinking reduces delay discounting and cigarette demand: An investigation of the good-subject effect. Journal of Behavioral Medicine, 41, 269–276. https://doi.org/10.1007/s10865-017-9908-1.

  67. Stein, J. S., Wilson, A. G., Koffarnus, M. N., Daniel, T. O., Epstein, L. H., & Bickel, W. K. (2016). Unstuck in time: Episodic future thinking reduces delay discounting and cigarette smoking. Psychopharmacology, 233, 3771–3778. https://doi.org/10.1007/s00213-016-4410-y.

  68. Sze, Y. Y., Daniel, T. O., Kilanowski, C. K., Collins, R. L., & Epstein, L. H. (2015). Web-based and mobile delivery of an episodic future thinking intervention for overweight and obese families: A feasibility study. JMIR MHealth & UHealth, 3(4). https://doi.org/10.2196/mhealth.4603.

  69. Sze, Y. Y., Stein, J. S., Bickel, W. K., Paluch, R. A., & Epstein, L. H. (2017). Bleak present, bright future: Online episodic future thinking, scarcity, delay discounting, and food demand. Clinical Psychological Science, 5, 683–697. https://doi.org/10.1177/2167702617696511.

  70. Weinstock, J., Mulhauser, K., Oremus, E. G., & D’Agostino, A. R. (2016). Demand for gambling: Development and assessment of a gambling purchase task. International Gambling Studies, 16, 316–327. https://doi.org/10.1080/14459795.2016.1182570.

  71. Wiehler, A., Petzschner, F. H., Stephan, K. E., & Peters, J. (2017). Episodic tags enhance striatal valuation signals during temporal discounting in pathological gamblers. ENeuro, 4(3). https://doi.org/10.1523/ENEURO.0159-17.2017.

  72. Wilson, A. G., Franck, C. T., Koffarnus, M. N., & Bickel, W. K. (2016). Behavioral economics of cigarette purchase tasks: Within-subject comparison of real, potentially real, and hypothetical cigarettes. Nicotine & Tobacco Research, 18, 524–530. https://doi.org/10.1093/ntr/ntv154.

Download references

Author Note

We would like to thank Michael Andrew for his careful review of this paper. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention.

Author information

Correspondence to Yusuke Hayashi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayashi, Y., Friedel, J.E., Foreman, A.M. et al. A Behavioral Economic Analysis of Demand for Texting while Driving. Psychol Rec 69, 225–237 (2019). https://doi.org/10.1007/s40732-019-00341-w

Download citation

Keywords

  • Texting while driving
  • Demand analysis
  • Distracted driving
  • Behavioral economics
  • College students