Advertisement

Recent Advances in CO2 Adsorption from Air: a Review

  • Meng Yang
  • Chao Ma
  • Mimi Xu
  • Shujuan WangEmail author
  • Lizhen Xu
Air Pollution (H Zhang and Y Sun, Section Editors)
  • 76 Downloads
Part of the following topical collections:
  1. Topical Collection on Air Pollution

Abstract

Carbon dioxide (CO2) adsorption from air and storage is a developing technology that can achieve negative carbon emissions, therefore easing climate deterioration. However, adsorbing CO2 from air is still a challenge when compared to the high CO2 concentration sources such as flue gas and syngas because it is hard to separate the steady and dilute target gas accurately with a moderate approach. Most related literatures focus on the development of adsorbents for higher adsorption capacity and lower regeneration energy consumption. However, studies on practical factors and adsorption processes are also necessary for engineering applications. Based on research of the CO2 adsorption, an introduction to recent advances in dilute CO2 adsorption using physical or chemical adsorbents is presented, and practical factors are emphasized. From the aspect of structure-property relationships, porous structure optimization of adsorbents is discussed for better equilibrium capacity and adsorption kinetics. Effects of practical parameters (such as moisture, fluctuating temperature, and oxygen) on working performance, especially stability of adsorbents, are revealed. Moisture influences are complex and multifaceted, so possible mechanisms of the moisture influences are summarized to help readers understand. Adsorption processes of capturing CO2 from air are also discussed and compared, distinguishing from the adsorption processes with other feeds. Energy supply and gas-solid contactors which are vital in practical adsorption process are discussed separately.

Keywords

CO2 adsorption Air capture Adsorption process Practical factors 

Notes

Funding Information

Financial support for Ministry of Science and Technology of China (project No. 2017YFB0603301) is greatly appreciated.

References

  1. 1.
    Le Quéré C, Andrew RM, Friedlingstein P, et al. Global carbon budget 2018. Earth Syst Sci Data. 2018;10(4):2141–94.  https://doi.org/10.5194/essd-10-2141-2018.CrossRefGoogle Scholar
  2. 2.
    International Energy Agency (IEA). CO2 emissions from fuel combustion - highlights: Paris, 2014.  https://doi.org/10.1787/cO2_fuel-2014-en
  3. 3.
    Minx JC, Lamb WF, Callaghan MW, et al. Negative emissions - part 1: research landscape and synthesis. Environ Res Lett. 2018;13(6).  https://doi.org/10.1088/1748-9326/aabf9b.CrossRefGoogle Scholar
  4. 4.
    Lackner KS. A guide to CO2 sequestration. Science. 2003;300:1677–8.CrossRefGoogle Scholar
  5. 5.
    Azarabadi H, Lackner KS. A sorbent-focused techno-economic analysis of direct air capture. Appl Energy. 2019;250:959–75.  https://doi.org/10.1016/j.apenergy.2019.04.012.CrossRefGoogle Scholar
  6. 6.
    Keith DW, Ha-Duong M, Stolaroff JK. Climate strategy with CO2 capture from the air. Clim Chang. 2006;74:17–45.  https://doi.org/10.1007/s10584-005-9026-x.CrossRefGoogle Scholar
  7. 7.
    Gutknecht V, Snæbjörnsdóttir SÓ, Sigfússon B, et al. Creating a carbon dioxide removal solution by combining rapid mineralization of CO2 with direct air capture. Energy Procedia. 2018;146:129–34.  https://doi.org/10.1016/j.egypro.2018.07.017.CrossRefGoogle Scholar
  8. 8.
    Zeman F. Experimental results for capturing CO2 from the atmosphere. AIChE J. 2008;54(5):1396–9.  https://doi.org/10.1002/aic.11452.CrossRefGoogle Scholar
  9. 9.
    Keith DW, Holmes G, Angelo DS, Heidel K. A process for capturing CO2 from the atmosphere. Joule. 2018;2:1573–94.  https://doi.org/10.1016/j.joule.2018.05.006.CrossRefGoogle Scholar
  10. 10.
    Lee TS, Cho JH, Chi SH. Carbon dioxide removal using carbon monolith as electric swing adsorption to improve indoor air quality. Build Environ. 2015;92:209–21.  https://doi.org/10.1016/j.buildenv.2015.04.028.CrossRefGoogle Scholar
  11. 11.
    Zhang Z, Zhou J, Xing W, et al. Critical role of small micropores in high CO2 uptake. Phys Chem Chem Phys. 2013;15(7):2523–9.  https://doi.org/10.1039/c2cp44436d.CrossRefGoogle Scholar
  12. 12.
    Wei H, Pedapati C, Vern R, Kawi S. Effect of indoor contamination on carbon dioxide adsorption of wood-based biochar — lessons for direct air capture. J Clean Prod. 2019;210:860–71.  https://doi.org/10.1016/j.jclepro.2018.10.206.CrossRefGoogle Scholar
  13. 13.
    Madden DG, Scott HS, Kumar A, et al. Flue-gas and direct-air capture of CO2 by porous metal-organic materials. Philos Trans R Soc A. 2017;375:20160025.  https://doi.org/10.1098/rsta.2016.0025.CrossRefGoogle Scholar
  14. 14.
    Stuckert NR, Yang RT. CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15. Environ Sci Technol. 2011;45(23):10257–64.  https://doi.org/10.1021/es202647a.CrossRefGoogle Scholar
  15. 15.
    Nugent P, Giannopoulou EG, Burd SD, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature. 2013;495(7439):80–4.  https://doi.org/10.1038/nature11893.CrossRefGoogle Scholar
  16. 16.
    Bhatt PM, Belmabkhout Y, Cadiau A, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J Am Chem Soc. 2016;138(29):9301–7.  https://doi.org/10.1021/jacs.6b05345.CrossRefGoogle Scholar
  17. 17.
    Belmabkhout Y, Guillerm V, Eddaoudi M. Low concentration CO2 capture using physical adsorbents: are metal-organic frameworks becoming the new benchmark materials? Chem Eng J. 2016;296:386–97.  https://doi.org/10.1016/j.cej.2016.03.124.CrossRefGoogle Scholar
  18. 18.
    Liu J, Wei Y, Zhao Y. Trace carbon dioxide capture by metal-organic frameworks. ACS Sustain Chem Eng. 2019;7(1):82–93.  https://doi.org/10.1021/acssuschemeng.8b05590.CrossRefGoogle Scholar
  19. 19.
    Zou L, Sun Y, Che S, et al. Porous organic polymers for post-combustion carbon capture. Adv Mater. 2017;29(37):1–35.  https://doi.org/10.1002/adma.201700229.CrossRefGoogle Scholar
  20. 20.
    Huang N, Day G, Yang X, Drake H, Zhou HC. Engineering porous organic polymers for carbon dioxide capture. Sci China Chem. 2017;60(8):1007–14.  https://doi.org/10.1007/s11426-017-9084-7.CrossRefGoogle Scholar
  21. 21.
    Sujan AR, Pang SH, Zhu G, Jones CW, Lively RP. Direct CO2 capture from air using poly(ethyleneimine)-loaded polymer/silica fiber sorbents. ACS Sustain Chem Eng. 2019;7:5264–73.  https://doi.org/10.1021/acssuschemeng.8b06203.CrossRefGoogle Scholar
  22. 22.
    Goeppert A, Zhang H, Sen R, Dang H, Prakash SG. Efficient, stable, oxidation resistant and cost effective epoxide modified polyamine adsorbents for CO2 capture from various sources including air. ChemSusChem. 2019;12(8):1712–23.  https://doi.org/10.1002/cssc.201802978.CrossRefGoogle Scholar
  23. 23.
    Lee WR, Hwang SY, Ryu DW, et al. Diamine-functionalized metal-organic framework: exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism. Energy Environ Sci. 2014;7(2):744–51.  https://doi.org/10.1039/c3ee42328j.CrossRefGoogle Scholar
  24. 24.
    Wang J, Huang H, Wang M, et al. Direct capture of low-concentration CO2 on mesoporous carbon-supported solid amine adsorbents at ambient temperature. Ind Eng Chem Res. 2015;54(19):5319–27.  https://doi.org/10.1021/acs.iecr.5b01060.CrossRefGoogle Scholar
  25. 25.
    Rodríguez-Mosqueda R, Bramer EA, Brem G. CO2 capture from ambient air using hydrated Na2CO3 supported on activated carbon honeycombs with application to CO2 enrichment in greenhouses. Chem Eng Sci. 2018;189:114–22.  https://doi.org/10.1016/j.ces.2018.05.043.CrossRefGoogle Scholar
  26. 26.
    Wang T, Lackner KS, Wright A. Moisture swing sorbent for carbon dioxide capture from ambient air. Environ Sci Technol. 2011;45:6670–5.  https://doi.org/10.1021/es201180v.CrossRefGoogle Scholar
  27. 27.
    Hou C, Wu Y, Wang T, Wang X, Gao X. Preparation of quaternized bamboo cellulose and its implication in direct air capture of CO2. Energy Fuel. 2018;33:1745–52.  https://doi.org/10.1021/acs.energyfuels.8b02821.CrossRefGoogle Scholar
  28. 28.
    Song J, Liu J, Zhao W, et al. Quaternized chitosan/PVA aerogels for reversible CO2 capture from ambient air. Ind Eng Chem Res. 2018;57:4941–8.  https://doi.org/10.1021/acs.iecr.8b00064.CrossRefGoogle Scholar
  29. 29.
    Wurzbacher JA, Gebald C, Steinfeld A. Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel. Energy Environ Sci. 2011;4(9):3584–92.  https://doi.org/10.1039/c1ee01681d.CrossRefGoogle Scholar
  30. 30.
    Shekhah O, Belmabkhout Y, Chen Z, et al. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat Commun. 2014;5:4228.  https://doi.org/10.1038/ncomms5228.CrossRefGoogle Scholar
  31. 31.
    Liao PQ, Chen XW, Liu SY, et al. Putting an ultrahigh concentration of amine groups into a metal-organic framework for CO2 capture at low pressures. Chem Sci. 2016;7(10):6528–33.  https://doi.org/10.1039/c6sc00836d.CrossRefGoogle Scholar
  32. 32.
    Sayari A, Liu Q, Mishra P. Enhanced adsorption efficiency through materials design for direct air capture over supported polyethylenimine. ChemSusChem. 2016;9(19):2796–803.  https://doi.org/10.1002/cssc.201600834.CrossRefGoogle Scholar
  33. 33.
    Sakwa-Novak MA, Tan S, Jones CW. Role of additives in composite PEI/oxide CO2 adsorbents: enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air. ACS Appl Mater Interfaces. 2015;7(44):24748–59.  https://doi.org/10.1021/acsami.5b07545.CrossRefGoogle Scholar
  34. 34.
    Choi S, Drese JH, Eisenberger PM, Jones CW. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environ Sci Technol. 2011;45(6):2420–7.  https://doi.org/10.1021/es102797w.CrossRefGoogle Scholar
  35. 35.
    Didas SA, Choi S, Chaikittisilp W, Jones CW. Amine-oxide hybrid materials for CO2 capture from ambient air. Acc Chem Res. 2015;48(10):2680–7.  https://doi.org/10.1021/acs.accounts.5b00284.CrossRefGoogle Scholar
  36. 36.
    Keller L, Lohaus T, Abduly L, Hadler G, Wessling M. Electrical swing adsorption on functionalized hollow fibers. Chem Eng J. 2019;371:107–17.  https://doi.org/10.1016/j.cej.2019.04.029.CrossRefGoogle Scholar
  37. 37.
    Ribeiro RPPL, Grande CA, Rodrigues AE. A review :electric swing adsorption for gas separation and purification. Sep Sci Technol. 2014;49(13):1985–2002.  https://doi.org/10.1080/01496395.2014.915854.CrossRefGoogle Scholar
  38. 38.
    Gebald C, Wurzbacher JA, Tingaut P, Steinfeld A. Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air. Environ Sci Technol. 2013;47(17):10063–70.  https://doi.org/10.1021/es401731p.CrossRefGoogle Scholar
  39. 39.
    Wurzbacher JA, Gebald C, Piatkowski N, Steinfeld A. Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle. Environ Sci Technol. 2012;46(16):9191–8.  https://doi.org/10.1021/es301953k.CrossRefGoogle Scholar
  40. 40.
    Wurzbacher AJ, Gebald C, Brunner S, Steinfeld A. Heat and mass transfer of temperature – vacuum swing desorption for CO2 capture from air. Chem Eng J. 2016;283:1329–38.  https://doi.org/10.1016/j.cej.2015.08.035.CrossRefGoogle Scholar
  41. 41.
    Shi X, Xiao H, Lackner KS, Chen X. Capture CO2 from ambient air using nanoconfined ion hydration. Angew Chem Int Ed. 2016;55:4026–9.  https://doi.org/10.1002/anie.201507846.CrossRefGoogle Scholar
  42. 42.
    Goeppert A, Czaun M, Surya Prakash GK, Olah GA. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy Environ Sci. 2012;5(7):7833–53.  https://doi.org/10.1039/c2ee21586a.CrossRefGoogle Scholar
  43. 43.
    Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW. direct capture of CO2 from ambient air. Chem Rev. 2016;116(19):11840–76.  https://doi.org/10.1021/acs.chemrev.6b00173.CrossRefGoogle Scholar
  44. 44.
    Zhang H, Goeppert A, Kar S, Prakash GKS. Structural parameters to consider in selecting silica supports for polyethylenimine based CO2 solid adsorbents. Importance of pore size. J CO2 Util. 2018;26:246–53.  https://doi.org/10.1016/j.jcou.2018.05.004.CrossRefGoogle Scholar
  45. 45.
    Lu W, Bosch M, Yuan D, Zhou HC. Cost-effective synthesis of amine-tethered porous materials for carbon capture. ChemSusChem. 2015;8(3):433–8.  https://doi.org/10.1002/cssc.201402622.CrossRefGoogle Scholar
  46. 46.
    Parshetti GK, Chowdhury S, Balasubramanian R. Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel. 2015;148:246–54.  https://doi.org/10.1016/j.fuel.2015.01.032.CrossRefGoogle Scholar
  47. 47.
    Zhang G, Zhao P, Xu Y, Yang Z, Cheng H, Zhang Y. Structure property-CO2 capture performance relations of amine-functionalized porous silica composite adsorbents. ACS Appl Mater Interfaces. 2018;10(40):34340–54.  https://doi.org/10.1021/acsami.8b13069.CrossRefGoogle Scholar
  48. 48.
    Yu J, Le Y, Cheng B. Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Adv. 2012;2(17):6784–91.  https://doi.org/10.1039/c2ra21017g.CrossRefGoogle Scholar
  49. 49.
    Qi SC, Liu Y, Peng AZ, et al. Fabrication of porous carbons from mesitylene for highly efficient CO2 capture: a rational choice improving the carbon loop. Chem Eng J. 2019;361:945–52.  https://doi.org/10.1016/j.cej.2018.12.167.CrossRefGoogle Scholar
  50. 50.
    Hirst EA, Taylor A, Mokaya R. A simple flash carbonization route for conversion of biomass to porous carbons with high CO2 storage capacity. J Mater Chem A. 2018;6:12393–403.  https://doi.org/10.1039/c8ta04409k.CrossRefGoogle Scholar
  51. 51.
    Belmabkhout Y, Serna-Guerrero R, Sayari A. Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification. Ind Eng Chem Res. 2010;49:359–65.  https://doi.org/10.1021/ie900837t.CrossRefGoogle Scholar
  52. 52.
    Kumar A, Madden DG, Lusi M, et al. Direct air capture of CO2 by physisorbent materials. Angew Chem Int Ed. 2015;54(48):14372–7.  https://doi.org/10.1002/anie.201506952.CrossRefGoogle Scholar
  53. 53.
    Huang K, Liu F, Fan JP, Dai S. Open and hierarchical carbon framework with ultralarge pore volume for efficient capture of carbon dioxide. ACS Appl Mater Interfaces. 2018;10(43):36961–8.  https://doi.org/10.1021/acsami.8b12182.CrossRefGoogle Scholar
  54. 54.
    Goeppert A, Zhang H, Czaun M, et al. Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air. ChemSusChem. 2014;7(5):1386–97.  https://doi.org/10.1002/cssc.201301114.CrossRefGoogle Scholar
  55. 55.
    Zhu J, Wu L, Bu Z, Jie S, Li BG. Polyethylenimine-grafted HKUST-type MOF/PolyHIPE porous composites (PEI@PGD-H) as highly efficient CO2 adsorbents. Ind Eng Chem Res. 2019;58(10):4257–66.  https://doi.org/10.1021/acs.iecr.9b00213.CrossRefGoogle Scholar
  56. 56.
    Potter ME, Cho KM, Lee JJ, Jones CW. Role of alumina basicity in CO2 uptake in 3-aminopropylsilyl-grafted alumina adsorbents. ChemSusChem. 2017;10(10):2192–201.  https://doi.org/10.1002/cssc.201700115.CrossRefGoogle Scholar
  57. 57.
    Yoo CJ, Lee LC, Jones CW. Probing intramolecular versus intermolecular CO2 adsorption on amine-grafted SBA-15. Langmuir. 2015;31(49):13350–60.  https://doi.org/10.1021/acs.langmuir.5b03657.CrossRefGoogle Scholar
  58. 58.
    Linneen NN, Pfeffer R, Lin YS. CO2 adsorption performance for amine grafted particulate silica aerogels. Chem Eng J. 2014;254:190–7.  https://doi.org/10.1016/j.cej.2014.05.087.CrossRefGoogle Scholar
  59. 59.
    Lee JJ, Yoo CJ, Chen CH, Hayes SE, Sievers C, Jones CW. Silica-supported sterically hindered amines for CO2 capture. Langmuir. 2018;34(41):12279–92.  https://doi.org/10.1021/acs.langmuir.8b02472.CrossRefGoogle Scholar
  60. 60.
    Qi G, Fu L, Giannelis EP. Sponges with covalently tethered amines for high-efficiency carbon capture. Nat Commun. 2014;5:5796–7.  https://doi.org/10.1038/ncomms6796.CrossRefGoogle Scholar
  61. 61.
    Arencibia A, Calleja G, Sanz R. Tuning the textural properties of HMS mesoporous silica. Functionalization towards CO2 adsorption. Microporous Mesoporous Mater. 2018;260:235–44.  https://doi.org/10.1016/j.micromeso.2017.10.038.CrossRefGoogle Scholar
  62. 62.
    Meng Y, Jiang J, Gao Y, Yan F, Liu N, Aihemaiti A. Comprehensive study of CO2 capture performance under a wide temperature range using polyethyleneimine-modified adsorbents. J CO2 Util. 2018;27:89–98.  https://doi.org/10.1016/j.jcou.2018.07.007.CrossRefGoogle Scholar
  63. 63.
    Holewinski A, Sakwa-Novak MA, Jones CW. Linking CO2 sorption performance to polymer morphology in aminopolymer/silica composites through neutron scattering. J Am Chem Soc. 2015;137(36):11749–59.  https://doi.org/10.1021/jacs.5b06823.CrossRefGoogle Scholar
  64. 64.
    Son WJ, Choi JS, Ahn WS. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 2008;113(1-3):31–40.  https://doi.org/10.1016/j.micromeso.2007.10.049.CrossRefGoogle Scholar
  65. 65.
    Witoon T. Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture. Mater Chem Phys. 2012;137(1):235–45.  https://doi.org/10.1016/j.matchemphys.2012.09.014.CrossRefGoogle Scholar
  66. 66.
    Bai S, Liu J, Gao J, Yang Q, Li C. Hydrolysis controlled synthesis of amine-functionalized hollow ethane-silica nanospheres as adsorbents for CO2 capture. Microporous Mesoporous Mater. 2012;151:474–80.  https://doi.org/10.1016/j.micromeso.2011.09.014.CrossRefGoogle Scholar
  67. 67.
    Thakkar H, Issa A, Rownaghi AA, Rezaei F. CO2 capture from air using amine-functionalized kaolin-based zeolites. Chem Eng Technol. 2017;40(11):1999–2007.  https://doi.org/10.1002/ceat.201700188.CrossRefGoogle Scholar
  68. 68.
    Rong X, Ettelaie R, Lishchuk SV, Cheng H, Zhao N, Xiao F, et al. Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture. Nat Commun. 2019;10:1854–10.  https://doi.org/10.1038/s41467-019-09805-7.CrossRefGoogle Scholar
  69. 69.
    Luz I, Soukri M, Lail M. Flying MOFs: polyamine-containing fluidized MOF/SiO2 hybrid materials for CO2 capture from post-combustion flue gas. Chem Sci. 2018;9(20):4589–99.  https://doi.org/10.1039/C7SC05372J.CrossRefGoogle Scholar
  70. 70.
    Wang D, Wang X, Ma X, Fillerup E, Song C. Three-dimensional molecular basket sorbents for CO2 capture: effects of pore structure of supports and loading level of polyethylenimine. Catal Today. 2014;233:100–7.  https://doi.org/10.1016/j.cattod.2014.01.038.CrossRefGoogle Scholar
  71. 71.
    Liu F, Huang K, Jiang L. Promoted adsorption of CO2 on amine-impregnated adsorbents by functionalized ionic liquids. AIChE J. 2018;64(10):3671–80.  https://doi.org/10.1002/aic.16333.CrossRefGoogle Scholar
  72. 72.
    Ikari K, Suzuki K, Imai H. Grain size control of mesoporous silica and formation of bimodal pore structures. Langmuir. 2004;20(26):11504–8.  https://doi.org/10.1021/la0483717.CrossRefGoogle Scholar
  73. 73.
    Wei L, Yan S, Wang H, Yang H. Fabrication of multi-compartmentalized mesoporous silica microspheres through a pickering droplet strategy for enhanced CO2 capture and catalysis. NPG Asia Mater. 2018;10:899–911.  https://doi.org/10.1038/s41427-018-0083-9.CrossRefGoogle Scholar
  74. 74.
    Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D. Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev. 2014;43(16):5594–617.  https://doi.org/10.1039/c4cs00078a.CrossRefGoogle Scholar
  75. 75.
    Zhang Z, Xian S, Xi H, Wang H, Li Z. Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chem Eng Sci. 2011;66(20):4878–88.  https://doi.org/10.1016/j.ces.2011.06.051.CrossRefGoogle Scholar
  76. 76.
    Nandi S, Collins S, Chakraborty D, et al. Ultralow parasitic energy for postcombustion CO2 capture realized in a nickel isonicotinate metal-organic framework with excellent moisture stability. J Am Chem Soc. 2017;139(5):1734–7.  https://doi.org/10.1021/jacs.6b10455.CrossRefGoogle Scholar
  77. 77.
    Cmarik GE, Kim M, Cohen SM, Walton KS. Tuning the adsorption properties of uio-66 via ligand functionalization. Langmuir. 2012;28(44):15606–13.  https://doi.org/10.1021/la3035352.CrossRefGoogle Scholar
  78. 78.
    Nandi S, Haldar S, Chakraborty D, Vaidhyanathan R. Strategically designed azolyl-carboxylate MOFs for potential humid CO2 capture. J Mater Chem A. 2017;5(2):535–43.  https://doi.org/10.1039/c6ta07145g.CrossRefGoogle Scholar
  79. 79.
    Li W, Bollini P, Didas SA, Choi S, Drese JH, Jones CW. Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam. ACS Appl Mater Interfaces. 2010;2(11):3363–72.  https://doi.org/10.1021/am100786z.CrossRefGoogle Scholar
  80. 80.
    Min K, Choi W, Choi M. Macroporous silica with thick framework for steam-stable and high-performance poly(ethyleneimine)/silica CO2 adsorbent. ChemSusChem. 2017;10(11):2518–26.  https://doi.org/10.1002/cssc.201700398.CrossRefGoogle Scholar
  81. 81.
    Wang X, Chen L, Guo Q. Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture. Chem Eng J. 2015;260:573–81.  https://doi.org/10.1016/j.cej.2014.08.107.CrossRefGoogle Scholar
  82. 82.
    Li K, Jiang J, Yan F, Tian S, Chen X. The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents. Appl Energy. 2014;136:750–5.  https://doi.org/10.1016/j.apenergy.2014.09.057.CrossRefGoogle Scholar
  83. 83.
    Gebald C, Wurzbacher JA, Borgschulte A, Zimmermann T, Steinfeld A. Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose. Environ Sci Technol. 2014;48(4):2497–504.  https://doi.org/10.1021/es404430g.CrossRefGoogle Scholar
  84. 84.
    Wang J, Wang M, Li W, et al. Application of polyethylenimine-impregnated solid adsorbents for direct capture of low-concentration CO2. AIChE J. 2015;61(3):972–80.  https://doi.org/10.1002/aic.14679.CrossRefGoogle Scholar
  85. 85.
    Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol. 2011;45:9101–8.  https://doi.org/10.1021/es202223p.CrossRefGoogle Scholar
  86. 86.
    Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc. 2011;133(50):20164–7.  https://doi.org/10.1021/ja2100005.CrossRefGoogle Scholar
  87. 87.
    Kong Y, Jiang G, Wu Y, Cui S, Shen X. Amine hybrid aerogel for high-efficiency CO2 capture: effect of amine loading and CO2 concentration. Chem Eng J. 2016;306:362–8.  https://doi.org/10.1016/j.cej.2016.07.092.CrossRefGoogle Scholar
  88. 88.
    Lin Z, Wei J, Geng L, Mei D, Liao L. An amine double functionalized composite strategy for CO2 adsorbent preparation using a ZSM-5/KIT-6 composite as a support. Energy Technol. 2018;6(9):1618–26.  https://doi.org/10.1002/ente.201700780.CrossRefGoogle Scholar
  89. 89.
    Drage TC, Arenillas A, Smith KM, Snape CE. Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater. 2008;116(1-3):504–12.  https://doi.org/10.1016/j.micromeso.2008.05.009.CrossRefGoogle Scholar
  90. 90.
    Darunte LA, Oetomo AD, Walton KS, Sholl DS, Jones CW. Direct air capture of CO2 using amine functionalized MIL-101(Cr). ACS Sustain Chem Eng. 2016;4(10):5761–8.  https://doi.org/10.1021/acssuschemeng.6b01692.CrossRefGoogle Scholar
  91. 91.
    Jung H, Jeon S, Jo DH, Huh J, Kim SH. Effect of crosslinking on the CO2 adsorption of polyethyleneimine-impregnated sorbents. Chem Eng J. 2017;307:836–44.  https://doi.org/10.1016/j.cej.2016.09.005.CrossRefGoogle Scholar
  92. 92.
    Heydari-Gorji A, Sayari A. Thermal, oxidative, and CO2-induced degradation of supported polyethylenimine adsorbents. Ind Eng Chem Res. 2012;51(19):6887–94.  https://doi.org/10.1021/ie3003446.CrossRefGoogle Scholar
  93. 93.
    Sayari A, Heydari-gorji A, Yang Y. CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. J Am Chem Soc. 2012;134:13834–42.  https://doi.org/10.1021/ja304888a.CrossRefGoogle Scholar
  94. 94.
    Zhai Y, Chuang SSC. Enhancing degradation resistance of polyethylenimine for CO2 capture with cross-linked poly(vinyl alcohol). Ind Eng Chem Res. 2017;56(46):13766–75.  https://doi.org/10.1021/acs.iecr.7b03636.CrossRefGoogle Scholar
  95. 95.
    Sayari A, Belmabkhout Y. Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J Am Chem Soc. 2010;132(18):6312–4.  https://doi.org/10.1021/ja1013773.CrossRefGoogle Scholar
  96. 96.
    Min K, Choi W, Kim C, Choi M. Oxidation-stable amine-containing adsorbents for carbon dioxide capture. Nat Commun. 2018;9:726–7.  https://doi.org/10.1038/s41467-018-03123-0.CrossRefGoogle Scholar
  97. 97.
    Pang SH, Lively RP, Jones CW. Oxidatively-stable linear poly(propylenimine)-containing adsorbents for CO2 capture from ultradilute streams. ChemSusChem. 2018;11(15):2628–37.  https://doi.org/10.1002/cssc.201800438.CrossRefGoogle Scholar
  98. 98.
    Pang SH, Lee LC, Sakwa-Novak MA, Lively RP, Jones CW. Design of aminopolymer structure to enhance performance and stability of CO2 sorbents: poly(propylenimine) vs poly(ethylenimine). J Am Chem Soc. 2017;139(10):3627–30.  https://doi.org/10.1021/jacs.7b00235.CrossRefGoogle Scholar
  99. 99.
    Lee JJ, Chen CH, Shimon D, Hayes SE, Sievers C, Jones CW. Effect of humidity on the CO2 adsorption of tertiary amine grafted SBA-15. J Phys Chem C. 2017;121(42):23480–7.  https://doi.org/10.1021/acs.jpcc.7b07930.CrossRefGoogle Scholar
  100. 100.
    Zhang H, Goeppert A, Olah GA, Prakash GKS. Remarkable effect of moisture on the CO2 adsorption of nano-silica supported linear and branched polyethylenimine. J CO2 Util. 2017;19:91–9.  https://doi.org/10.1016/j.jcou.2017.03.008.CrossRefGoogle Scholar
  101. 101.
    Datta SJ, Khumnoon C, Lee ZH, et al. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate. Science. 2015;350(6258):302–6.  https://doi.org/10.1126/science.aab1680.CrossRefGoogle Scholar
  102. 102.
    Soubeyrand-Lenoir E, Vagner C, Yoon JW, et al. How water fosters a remarkable 5-fold increase in low-pressure CO2 uptake within mesoporous MIL-100(Fe). J Am Chem Soc. 2012;134(24):10174–81.  https://doi.org/10.1021/ja302787x.CrossRefGoogle Scholar
  103. 103.
    Xian S, Peng J, Zhang Z, Xia Q, Wang H, Li Z. Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures. Chem Eng J. 2015;270:385–92.  https://doi.org/10.1016/j.cej.2015.02.041.CrossRefGoogle Scholar
  104. 104.
    Wang J, Wang S, Xin Q, Li Y. Perspectives on water-facilitated CO2 capture. J Mater Chem A. 2017;5:6794–816.  https://doi.org/10.1039/c7ta01297g.CrossRefGoogle Scholar
  105. 105.
    Li K, Kress JD, Mebane DS. The mechanism of CO2 adsorption under dry and humid conditions in mesoporous silica-supported amine sorbents. J Phys Chem C. 2016;120(41):23683–91.  https://doi.org/10.1021/acs.jpcc.6b08808.CrossRefGoogle Scholar
  106. 106.
    Mebane DS, Kress JD, Storlie CB, Fauth DJ, Gray ML, Li K. Transport, zwitterions, and the role of water for CO2 adsorption in mesoporous silica-supported amine sorbents. J Phys Chem C. 2013;117(50):26617–27.  https://doi.org/10.1021/jp4076417.CrossRefGoogle Scholar
  107. 107.
    Flaig RW, Osborn Popp TM, Fracaroli AM, et al. The chemistry of CO2 capture in an amine-functionalized metal-organic framework under dry and humid conditions. J Am Chem Soc. 2017;139(35):12125–8.  https://doi.org/10.1021/jacs.7b06382.CrossRefGoogle Scholar
  108. 108.
    Chen C, Shimon D, Lee JJ, et al. The “missing” bicarbonate in CO2 chemisorption reactions on solid amine sorbents. J Am Chem Soc. 2018;140:8648–51.  https://doi.org/10.1021/jacs.8b04520.CrossRefGoogle Scholar
  109. 109.
    Didas SA, Sakwa-Novak MA, Foo GS, Sievers C, Jones CW. Effect of amine surface coverage on the co-adsorption of CO2 and water: spectral deconvolution of adsorbed species. J Phys Chem Lett. 2014;5(23):4194–200.  https://doi.org/10.1021/jz502032c.CrossRefGoogle Scholar
  110. 110.
    Yu J, Chuang SSC. The role of water in CO2 capture by amine. Ind Eng Chem Res. 2017;56(21):6337–47.  https://doi.org/10.1021/acs.iecr.7b00715.CrossRefGoogle Scholar
  111. 111.
    Donaldson TL, Nguyan YN. Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Ind Eng Chem Fundam. 1980;19:260–6.  https://doi.org/10.1021/i160075a005.CrossRefGoogle Scholar
  112. 112.
    Wang T, Lackner S, Wright AB. Moisture-swing sorption for carbon dioxide capture from ambient air : a thermodynamic analysis. Phys Chem Chem Phys. 2013;15:504–14.  https://doi.org/10.1039/c2cp43124f.CrossRefGoogle Scholar
  113. 113.
    Xiao H, Shi X, Zhang Y, et al. The catalytic effect of H2O on the hydrolysis of CO3 2- in hydrated clusters and its implication in the humidity driven CO2 air capture. Phys Chem Chem Phys. 2017;19:27435–41.  https://doi.org/10.1039/c7cp04218c.CrossRefGoogle Scholar
  114. 114.
    Shi X, Xiao H, Chen X, Lackner KS. The effect of moisture on the hydrolysis of basic salts. Chem Eur J. 2016;22:18326–30.  https://doi.org/10.1002/chem.201603701.CrossRefGoogle Scholar
  115. 115.
    Berger E, Hahn MW, Przybilla T, et al. Impact of solvents and surfactants on the self-assembly of nanostructured amine functionalized silica spheres for CO2 capture. J Energy Chem. 2016;25(2):327–35.  https://doi.org/10.1016/j.jechem.2016.02.005.CrossRefGoogle Scholar
  116. 116.
    Inagaki F, Matsumoto C, Iwata T, Mukai C. CO2-selective absorbents in air: reverse lipid bilayer structure forming neutral carbamic acid in water without hydration. J Am Chem Soc. 2017;139(13):4639–42.  https://doi.org/10.1021/jacs.7b01049.CrossRefGoogle Scholar
  117. 117.
    Zhao R, Deng S, Wang S, et al. Thermodynamic research of adsorbent materials on energy efficiency of vacuum-pressure swing adsorption cycle for CO2 capture. Appl Therm Eng. 2018;128:818–29.  https://doi.org/10.1016/j.applthermaleng.2017.09.074.CrossRefGoogle Scholar
  118. 118.
    Webley PA, Qader A, Ntiamoah A, et al. A new multi-bed vacuum swing adsorption cycle for CO2 capture from flue gas streams. Energy Procedia. 2017;114:2467–80.  https://doi.org/10.1016/j.egypro.2017.03.1398.CrossRefGoogle Scholar
  119. 119.
    Lively RP, Realff MJ. On thermodynamic separation efficiency : adsorption processes. AIChE J. 2016;62(10):3699–705.  https://doi.org/10.1002/aic.15269.CrossRefGoogle Scholar
  120. 120.
    Elfving J, Bajamundi C, Kauppinen J. Characterization and performance of direct air capture sorbent. Energy Procedia. 2017;114:6087–101.  https://doi.org/10.1016/j.egypro.2017.03.1746.CrossRefGoogle Scholar
  121. 121.
    Erden H, Ebner AD, Ritter JA. Development of a pressure swing adsorption cycle for producing high purity CO2 from dilute feed streams. Part I: feasibility study. Ind Eng Chem Res. 2018;57(23):8011–22.  https://doi.org/10.1021/acs.iecr.7b05024.CrossRefGoogle Scholar
  122. 122.
    Kulkarni AR, Sholl DS. Analysis of equilibrium-based TSA processes for direct capture of CO2 from air. Ind Eng Chem Res. 2012;51(25):8631–45.  https://doi.org/10.1021/ie300691c.CrossRefGoogle Scholar
  123. 123.
    He L, Fan M, Dutcher B, et al. Dynamic separation of ultradilute CO2 with a nanoporous amine-based sorbent. Chem Eng J. 2012;189-190:13–23.  https://doi.org/10.1016/j.cej.2012.02.013.CrossRefGoogle Scholar
  124. 124.
    Sinha A, Darunte LA, Jones CW, Realff MJ, Kawajiri Y. Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents. Ind Eng Chem Res. 2017;101(3):750–64.  https://doi.org/10.1021/acs.iecr.6b03887.CrossRefGoogle Scholar
  125. 125.
    Wijesiri RP, Knowles GP, Yeasmin H, Hoadley A, Chaffee AL. Desorption process for capturing CO2 from air with supported amine sorbent. Ind Eng Chem Res. 2019;58:15606–18.  https://doi.org/10.1021/acs.iecr.9b03140.CrossRefGoogle Scholar
  126. 126.
    Park J, Won W, Jung W, Lee KS. One-dimensional modeling of a turbulent fluidized bed for a sorbent-based CO2 capture process with solid–solid sensible heat exchange. Energy. 2019;168:1168–80.  https://doi.org/10.1016/j.energy.2018.11.152.CrossRefGoogle Scholar
  127. 127.
    Jung W, Park J, Won W, Lee KS. Simulated moving bed adsorption process based on a polyethylenimine-silica sorbent for CO2 capture with sensible heat recovery. Energy. 2018;150:950–64.  https://doi.org/10.1016/j.energy.2018.03.022.CrossRefGoogle Scholar
  128. 128.
    Bajamundi CJE, Koponen J, Ruuskanen V, et al. Capturing CO2 from air: technical performance and process control improvement. J CO2 Util. 2019;30:232–9.  https://doi.org/10.1016/j.jcou.2019.02.002.CrossRefGoogle Scholar
  129. 129.
    Psarras P, Krutka H, Fajardy M, et al. Slicing the pie: how big could carbon dioxide removal be ? WIREs Energy Environ. 2017;6:e253.  https://doi.org/10.1002/wene.253.CrossRefGoogle Scholar
  130. 130.
    Zhao R, Zhao L, Wang S, Deng S, Li H, Yu Z. Solar-assisted pressure-temperature swing adsorption for CO2 capture: effect of adsorbent materials. Sol Energy Mater Sol Cells. 2018;185:494–504.  https://doi.org/10.1016/j.solmat.2018.06.004.CrossRefGoogle Scholar
  131. 131.
    Zhang W, Liu H, Sun C, Drage TC, Snape CE. Capturing CO2 from ambient air using a polyethyleneimine-silica adsorbent in fluidized beds. Chem Eng Sci. 2014;116:306–16.  https://doi.org/10.1016/j.ces.2014.05.018.CrossRefGoogle Scholar
  132. 132.
    Darunte LA, Sen T, Bhawanani C, et al. Moving beyond adsorption capacity in design of adsorbents for CO2 capture from ultradilute feeds: kinetics of CO2 adsorption in materials with stepped isotherms. Ind Eng Chem Res. 2019;58(1):366–77.  https://doi.org/10.1021/acs.iecr.8b05042.CrossRefGoogle Scholar
  133. 133.
    Chahbani MH, Tondeur D. Pressure drop in fixed-bed adsorbers. Chem Eng J. 2001;81(1-3):23–34.  https://doi.org/10.1016/S1385-8947(00)00215-1.CrossRefGoogle Scholar
  134. 134.
    Al-Janabi N, Vakili R, Kalumpasut P, et al. Velocity variation effect in fixed bed columns: a case study of CO2 capture using porous solid adsorbents. AIChE J. 2018;64(6):2189–97.  https://doi.org/10.1002/aic.16135.CrossRefGoogle Scholar
  135. 135.
    Zhang W, Sun C, Snape CE, et al. Process simulations of post-combustion CO2 capture for coal and natural gas-fired power plants using a polyethyleneimine/silica adsorbent. Int J Greenh Gas Control. 2017;58:276–89.  https://doi.org/10.1016/j.ijggc.2016.12.003.CrossRefGoogle Scholar
  136. 136.
    Sakwa-Novak MA, Yoo CJ, Tan S, Rashidi F, Jones CW. Poly(ethylenimine)-functionalized monolithic alumina honeycomb adsorbents for CO2 capture from air. ChemSusChem. 2016;9(14):1859–68.  https://doi.org/10.1002/cssc.201600404.CrossRefGoogle Scholar
  137. 137.
    Climeworks. Available at: https://www.climeworks.com. Accessed June 2, 2019.
  138. 138.
    Hicks JC, Drese JH, Fauth DJ, Gray ML, Qi G, Jones CW. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J Am Chem Soc. 2008;130(10):2902–3.  https://doi.org/10.1021/ja077795v.CrossRefGoogle Scholar
  139. 139.
    Global Thermostat. Available at: https://globalthermostat.com. Accessed June 2, 2019.
  140. 140.
    Thakkar H, Eastman S, Hajari A, Rownaghi AA, Knox JC, Rezaei F. 3D-printed zeolite monoliths for cO2 removal from enclosed environments. ACS Appl Mater Interfaces. 2016;8(41):27753–61.  https://doi.org/10.1021/acsami.6b09647.CrossRefGoogle Scholar
  141. 141.
    Thakkar H, Eastman S, Al-Naddaf Q, Rownaghi AA, Rezaei F. 3D-printed metal-organic framework monoliths for gas adsorption processes. ACS Appl Mater Interfaces. 2017;9(41):35908–16.  https://doi.org/10.1021/acsami.7b11626.CrossRefGoogle Scholar
  142. 142.
    Heidel K, Keith D, Singh A, Holmes G. Process design and costing of an air-contactor for air-capture. Energy Procedia. 2011;4:2861–8.  https://doi.org/10.1016/j.egypro.2011.02.192.CrossRefGoogle Scholar
  143. 143.
    Keller L, Lohaus T, Abduly L, Hadler G, Wessling M. Electrical swing adsorption on functionalized hollow fibers. Chem Eng J. 2019;371:107–17.  https://doi.org/10.1016/j.cej.2019.04.029.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Meng Yang
    • 1
    • 2
  • Chao Ma
    • 1
    • 2
  • Mimi Xu
    • 1
    • 2
  • Shujuan Wang
    • 1
    • 2
    Email author
  • Lizhen Xu
    • 1
    • 2
  1. 1.Department of Energy and Power EngineeringTsinghua UniversityBeijingChina
  2. 2.Beijing Engineering Research Center for Ecological Restoration and Carbon Fixation of Saline-Alkali and Desert LandTsinghua UniversityBeijingChina

Personalised recommendations