Advertisement

Enantioselective Behavior of the Fungicide Tebuconazole in Soil

  • Lucia Škulcová
  • Natália Neuwirthová
  • Zdeněk Šimek
  • Marek Trojan
  • Lucie BielskáEmail author
Original Article
  • 9 Downloads

Abstract

Enantioselectivity (defined as the enantiomer fraction, EF) in sorption, dissipation and bioaccumulation was assessed for the model compound tebuconazole. Tebuconazole sorption in soils was affected by organic carbon (OC) and clay contents and cation exchange capacity, and appeared to be non-enantioselective for both tested soils, soil components and soil amendments. The bioaccumulation test consisted of two phases: the uptake phase and the elimination phase including the assessment of enantiospecific uptake and elimination rates. Unlike dissipation in soils, bioaccumulation of tebuconazole from these soils was enantioselective for both tested earthworm species (Eisenia andrei and Lumbricus terrestris). Peak-shaped bioaccumulation profiles were observed for all tested earthworm–soil variants with the maximum tissue concentrations reached within 7–10 days of exposure. Bioaccumulation factors ranged from 0.03 to 0.87. EF values of earthworm extracts varied from 0.28 to 0.52 with EF values <0.50 dominating. Enantioselectivity in bioaccumulation resulted from different excretion rates of the enantiomers. The interspecies similarity suggests that enantioselectivity in accumulation is a common phenomenon, and therefore, the risk assessment of tebuconazole should preferentially be evaluated at the enantiomer level. If this is not the case, a chiral correction factor of 2 (based on the enantiomer-specific BAF that differed by up to a factor of 2) may be recommended to account for enantioselectivity in tebuconazole bioaccumulation.

Keywords

Tebuconazole Enantioselectivity Sorption Bioavailability Dissipation 

Notes

Acknowledgments

The research was financially supported by the Czech Science Foundation (grant No. GJ18-14926Y) and the RECETOX Research Infrastructure (LM2015051 and CZ.02.1.01/0.0/0.0/16_013/0001761), which is greatly acknowledged.

Supplementary material

40710_2019_409_MOESM1_ESM.docx (58 kb)
ESM 1 (DOCX 57 kb)

References

  1. Buerge IJ, Poiger T, Müller MD, Buser H-R (2003) Enantioselective degradation of metalaxyl in soils: chiral preference changes with soil pH. Environ Sci Technol 37:2668–2674.  https://doi.org/10.1021/es0202412 CrossRefGoogle Scholar
  2. Celis R, Gámiz B, Facenda G, Hermosín MC (2015) Enantioselective sorption of the chiral fungicide metalaxyl on soil from non-racemic aqueous solutions: environmental implications. J Hazard Mater 300:581–589.  https://doi.org/10.1016/j.jhazmat.2015.07.059 CrossRefGoogle Scholar
  3. Chang J, Wang Y, Wang H, Li J, Xu P (2016) Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm. Chemosphere 144:1351–1357.  https://doi.org/10.1016/j.chemosphere.2015.10.011 CrossRefGoogle Scholar
  4. Chen JH, Wang HL, Guo BY, Xu P, Li JZ (2013) The enantioselective pharmacokinetics metabolism of diniconazole in quail (Coturnix coturnixs japonica). Chirality 25:910–916.  https://doi.org/10.1002/chir.22233 CrossRefGoogle Scholar
  5. Chen J, Saleem M, Wang C, Liang W, Zhang Q (2018) Individual and combined effects of herbicide tribenuron-methyl and fungicide tebuconazole on soil earthworm Eisenia fetida. Sci Rep 8:2967.  https://doi.org/10.1038/s41598-018-21288-y CrossRefGoogle Scholar
  6. Cui N, Xu H, Yao S, He Y, Zhang H, Yu Y (2018) Chiral triazole fungicide tebuconazole: enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils. Environ Sci Pollut Res 25:25468–25475.  https://doi.org/10.1007/s11356-018-2587-9 CrossRefGoogle Scholar
  7. Edwards C (2004) Earthworm ecology, 2nd ed. CRC Press, Boca Raton, p 456Google Scholar
  8. EFSA (2008) Conclusion regarding the peer review of the pesticide risk assessment of the active substance tebuconazole. EFSA Sci Rep 176:1–109Google Scholar
  9. European Commission (2013) Ad-hoc study to support the initial establishment of the list of candidates for substitution as required in Article 80(7) of Regulation (EC) No 1107/2009Google Scholar
  10. Gamiz B, Facenda G, Celis R (2016a) Evidence for the effect of sorption enantioselectivity on the availability of chiral pesticide enantiomers in soil. Environ Pollut 213:966–973.  https://doi.org/10.1016/j.envpol.2016.03.052 CrossRefGoogle Scholar
  11. Gamiz B, Lopez-Cabeza R, Facenda G, Celis R (2016b) Effect of synthetic clay and biochar addition on dissipation and enanantioselectivity of tebuconazole and metalaxyl in an agricultural soil: laboratory and field experiments. Agric Ecosyst Environ 230:32–41CrossRefGoogle Scholar
  12. Gamiz B, Pignatello J, Cox L, Hermosín MC, Celis R (2016c) Environmental fate of the fungicide metalaxyl in soil amended with composted olive-mill waste and its biochar: an enantioselective study. Sci Total Environ 541:776–783.  https://doi.org/10.1016/j.scitotenv.2015.09.097 CrossRefGoogle Scholar
  13. Garrison A (2006) Probing the enantioselectivity of chiral pesticides. Environ Sci Technol 40:16–23.  https://doi.org/10.1021/es063022f CrossRefGoogle Scholar
  14. Hvězdová M, Kosubová P, Košíková M, Scherr KE, Šimek Z, Brodský L, Šudoma M, Škulcová L, Sáńka M, Svobodová M, Krkošková L, Vašíčková J, Neuwirthová N, Bielská L, Hofman J (2018) Currently and recently used pesticides in central European arable soils. Sci Total Environ 613–614:361–370CrossRefGoogle Scholar
  15. Katagi T, Ose K (2015) Toxicity, bioaccumulation and metabolism of pesticides in the earthworm. J Pestic Sci 40:69–81.  https://doi.org/10.1584/jpestics.D15-003 CrossRefGoogle Scholar
  16. Krauss M, Wilcke W, Zech W (2000) Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. Environ Sci Technol 34:4335–4340CrossRefGoogle Scholar
  17. Lewis D, Garrison A, Wommack K, Whittemore A, Steudler P, Melillo J (1999) Influence of environmental changes on degradation of chiral pollutants in soils. Nature 401:898–901.  https://doi.org/10.1038/44801 CrossRefGoogle Scholar
  18. Li Y, Dong F, Liu X, Xu J, Han Y, Zheng Y (2015) Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils. Chemosphere 122:145–153.  https://doi.org/10.1016/j.chemosphere.2014.11.031 CrossRefGoogle Scholar
  19. Lin Z, Zhen Z, Wu Z, Yang J, Zhong L, Hu H, Luo C, Bai J, Li Y, Zhang D (2016) The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils. J Hazard Mater 301:35–45.  https://doi.org/10.1016/j.jhazmat.2015.08.034 CrossRefGoogle Scholar
  20. Liu C, Lv XT, Zhu WX, Qu H, Yang G, Yong X, Guo B, Yuan W, Hui L (2013) Enantioselective bioaccumulation of diniconazole in Tenebrio molitor larvae. Chirality 25:917–922.  https://doi.org/10.1002/chir.22234 CrossRefGoogle Scholar
  21. Liu T, Chen D, Li Y, Wang X, Wang F (2018) Enantioselective bioaccumulation and toxicity of the neonicotinoid insecticide dinotefuran in earthworms (Eisenia fetida). J Agric Food Chem 66:4531–4540.  https://doi.org/10.1021/acs.jafc.8b00285 CrossRefGoogle Scholar
  22. Matallo M, Romero E, Sánchez-Rasero F, Peña A, Dios G (1998) Adsorption of mecoprop and dichlorprop on calcareous and organic matter amended soils: comparative adsorption of racemic and pure enantiomeric forms. J Environ Sci Heal Part B 33:51–66.  https://doi.org/10.1080/03601239809373129 CrossRefGoogle Scholar
  23. OECD (2000) Test Nr. 106: adsorption – desorption using a batch equilibrium method. Organisation for Economic Co-operation and Development, ParisCrossRefGoogle Scholar
  24. Pauzat F, Marloie G, Markovits A, Ellinger Y (2015) Global versus local adsorption selectivity. Int J Astrobiol 14:563–570.  https://doi.org/10.1017/S1473550415000087 CrossRefGoogle Scholar
  25. Qu H, Wang P, Ma R, Qiu X, Xu P, Zhou Z, Liu D (2014) Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida). Sci Total Environ 485–486:415–420.  https://doi.org/10.1016/j.scitotenv.2014.03.054 CrossRefGoogle Scholar
  26. Saha A (2017) Dissipation and safety evaluation of tebuconazole residues in peanut-field ecosystem. Proc Natl Acad Sci India Sect B Biol Sci 87:753–760.  https://doi.org/10.1007/s40011-015-0642-6 CrossRefGoogle Scholar
  27. Sanchez-Hernandez JC, Notario Del Pino J, Capowiez Y, Mazzia C, Rault M (2018) Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms. Sci Total Environ 612:1407–1416.  https://doi.org/10.1016/j.scitotenv.2017.09.043 CrossRefGoogle Scholar
  28. Shaner DL, Brunk G, Belles D, Westra P, Nissen S (2006) Soil dissipation and biological activity of metolachlor and S-metolachlor in five soils. Pest Manag Sci 62:617–623.  https://doi.org/10.1002/ps.1215 CrossRefGoogle Scholar
  29. Singh N (2002) Sorption behavior of triazole fungicides in Indian soils and its correlation with soil properties. J Agric Food Chem 50:6434–6439CrossRefGoogle Scholar
  30. Sukul P, Lamshöft M, Zühlke S, Spiteller M (2013) Evaluation of sorption-desorption processes for metalaxyl in natural and artificial soils. J Environ Sci Heal – Part B Pestic Food Contam Agric Wastes 48:431–441.  https://doi.org/10.1080/03601234.2012.761831 CrossRefGoogle Scholar
  31. Svobodová M, Šmídová K, Hvězdová M, Hofman J (2018) Uptake kinetics of pesticides chlorpyrifos and tebuconazole in the earthworm Eisenia andrei in two different soils. Environ Pollut 236:257–264.  https://doi.org/10.1016/j.envpol.2018.01.082 CrossRefGoogle Scholar
  32. Van der Wal L, Jager T, Fleuren R, Barendregt A, Sinnige TL, Van Gestel CAM, Hermens JLM (2004) Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ Sci Technol 38:4842–4848CrossRefGoogle Scholar
  33. Wang Q, Qiu J, Zhou Z, Cao A, Wang X, Zhu W, Dang Z (2009) Stereoselective pharmacokinetics of diniconazole enantiomers in rabbits. Chirality 21:699–703.  https://doi.org/10.1002/chir.20667 CrossRefGoogle Scholar
  34. Wang X, Zhang H, Wu C, Wang X, Xu H, Wang X, Li Z (2012) Enantioselective degradation of tebuconazole in cabbage, cucumber, and soils. Chirality 24:104–111.  https://doi.org/10.1002/chir.21030 CrossRefGoogle Scholar
  35. Wang H, Chen J, Guo B-Y, Li J (2014) Enantioseletive bioaccumulation and metabolization of diniconazole in earthworms (Eiseniafetida) in an artificial soil. Ecotoxicol Environ Saf 99:98–104.  https://doi.org/10.1016/j.ecoenv.2013.10.017 CrossRefGoogle Scholar
  36. Wang X, Liu Y, Xue M, Wang Z, Yu J, Guo X (2019) Enantioselective degradation of chiral fungicides triticonazole and prothioconazole in soils and their enantioselective accumulation in earthworms Eisenia fetida. Ecotoxicol Environ Saf 183:109491.  https://doi.org/10.1016/j.ecoenv.2019.109491 CrossRefGoogle Scholar
  37. Wedyan M, Preston MR (2005) Isomer-selective adsorption of amino acids by components of natural sediments. Environ Sci Technol 39:2115–2119.  https://doi.org/10.1021/es040474o CrossRefGoogle Scholar
  38. Xu P, Diao J, Liu D, Zhou Z (2011) Enantioselective bioaccumulation and toxic effects of metalaxyl in earthworm Eisenia foetida. Chemosphere 83:1074–1079.  https://doi.org/10.1016/j.chemosphere.2011.01.047 CrossRefGoogle Scholar
  39. Xu P, Wang Y, Zhang Y, Li J, Wang H (2014) Toxicity and bioaccumulation of ethofumesate enantiomers in earthworm Eisenia fetida. Chemosphere 112:163–169.  https://doi.org/10.1016/j.chemosphere.2014.03.120 CrossRefGoogle Scholar
  40. Ye J, Wu J, Liu W (2009) Enantioselective separation and analysis of chiral pesticides by high-performance liquid chromatography. TrAC Trends Anal Chem 28:1148–1163.  https://doi.org/10.1016/j.trac.2009.07.008 CrossRefGoogle Scholar
  41. Ye XL, Qiu J, Peng AG, Chai, T, Zhao, H, Ge, X (2013) Enantioselective degradation of tebuconazole in wheat and soil under open field conditions. Advances in Environmental Technologies. Trans Tech Publications, pp 348–356Google Scholar
  42. Yu D, Li J, Zhang Y, Wang H, Guo B, Zheng L (2012) Enantioseletive bioaccumulation of tebuconazole in earthworm Eisenia fetida. J Environ Sci (China) 24:2198–2204CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lucia Škulcová
    • 1
  • Natália Neuwirthová
    • 1
  • Zdeněk Šimek
    • 1
  • Marek Trojan
    • 1
  • Lucie Bielská
    • 1
    Email author
  1. 1.Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations