Advertisement

CFD and Experimental Study of 45° Inclined Thermal-Saline Reversible Buoyant Jets in Stationary Ambient

  • Hossein ArdalanEmail author
  • Fereidon Vafaei
Original Article
  • 2 Downloads

Abstract

Inclined submerged jets are mostly employed in the disposal of effluent produced by industrial sites such as desalination and power plants. The optimal design of discharge systems has been a topic of interest in many studies seeking to improve the mixing of effluent and reduce its negative environmental impacts. In addition to salinity, the effluent produced by thermal desalination units, which are usually built near power plants, has a high temperature compared to the marine environment and is mixed with hot power plant effluent, eventually forming thermal-saline effluent. The present study numerically modeled thermal-saline effluent using realizable k − ε turbulence model for a discharge angle of 45° in a uniform, stationary environment. The experimental results were used to calibrate the model results. Generally, the geometrical characteristics obtained from the numerical and physical models were in good consistency, which indicates the ability of the model in predicting the behavior of thermal-saline jets.

Keywords

Wastewater Desalination Thermal-saline Inclined dense jets OpenFoam 

Notes

Acknowledgments

This research was conducted in the course of the Doctoral Thesis of the first author at the K. N. Toosi University of Technology. Numerical and experimental modeling of the research were carried out at the Water Research Institute. The writers are appreciative of the institute model equipment supports.

Notation

B ratio of density difference = \( \frac{\Delta \rho }{\rho_a}\left( Non- dimenssional\right) \)

bv the radius defined by C=0.37Cm (l)

Cm maximum tracer concentration in cross section (psu)

Ccp tracer concentration at centerline peak (psu)

Cr tracer concentration at return point (psu)

C0 tracer concentration at source point (psu)

D port diameter (l)

Frd jet densimetric Froude number =\( u/\sqrt{g^{\prime }D} \) (Nondimenssional)

g acceleration due to gravity (l/t2)

g modified acceleration due to gravity =g(ρ0 − ρa/ρa) (l/t2)

h height of nozzle outlet above bed (l)

kt heat transfer coefficient (l2/t)

kC salinity transfer coefficient (l2/t)

LM jet to plume length scale (l)

Lq discharge length scale (l)

M jet momentum flux (l4/t2)

P Prandtl number (Nondimenssional)

Pt turbulent Prandtl number (Nondimenssional)

Q jet volume flux (l3/t)

R jet Reynolds number =ud/ν (Nondimenssional)

Sch Schmidt number (Nondimenssional)

Scht turbulent Schmidt number (Nondimenssional)

Sm (1 − Ccp/C0)=centerline peak point dilution (Nondimenssional)

Sr (1 − Cr/C0)= return point dilution (Nondimenssional)

T water temperature (θ)

u velocity (l/t)

Xm horizontal distance from jet exit to location of centerline peak (l)

Xt horizontal distance from jet exit to location of terminal rise height (l)

Xr horizontal distance from jet exit to location of return point (l)

Ym final centerline peak height (l)

Yt terminal rise height (refers to upper jet boundary) (l)

Greek Symbols

ρa Ambient density (M/l3)

ρ0 Effluent density (M/l3)

∆ρ Density difference (ρ0 − ρa) (M/l3)

∆C Concentration difference (C0 − Ca) (psu)

φ dense inclined jet geometrical characteristics (l)

θ initial discharge angle (R)

νt turbulent kinematic viscosity (l2/t)

ν kinematic viscosity (l2/t)

References

  1. Abessi O, Roberts PJW (2014) Multiport diffusers for dense discharges. J Hydraul Eng 140:1–24.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0000882 CrossRefGoogle Scholar
  2. Abessi O, Roberts PJW (2015) Effect of nozzle orientation on dense jets in stagnant environments. J Hydraul Eng 141:1–8.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0001032 CrossRefGoogle Scholar
  3. Abessi O, Roberts PJW (2016) Dense jet discharges in shallow water. J Hydraul Eng 142:1–13.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0001057 CrossRefGoogle Scholar
  4. Angelidis P, Kalpakis D, Gyrikis V, Kotsovinos N (2017) 2D brine sewage after impinging on a shallow sea free surface. Environ Fluid Mech 17:615–628.  https://doi.org/10.1007/s10652-017-9511-6 CrossRefGoogle Scholar
  5. Ardalan H, Vafaei F (2018a) Hydrodynamic classification of submerged thermal-saline inclined single-port discharges. Mar Pollut Bull 130:299–306.  https://doi.org/10.1016/j.marpolbul.2018.03.052 CrossRefGoogle Scholar
  6. Ardalan H, Vafaei F (2018b) Geometrical characteristics of inclined thermal-saline negatively buoyant jets. Reg Stud Mar Sci article in pressGoogle Scholar
  7. Aziz TN, Raiford JP, Khan AA (2008) Numerical simulation of turbulent jets. Eng Appl Comput Fluid Mech 2:234–243.  https://doi.org/10.1080/19942060.2008.11015224 Google Scholar
  8. Baddour RE, Zhang H (2009) Density effect on round turbulent hypersaline fountain. J Hydraul Eng 135:57–59.  https://doi.org/10.1061/(ASCE)0733-9429(2009)135:1(57) CrossRefGoogle Scholar
  9. Bashitialshaaer R, Larson M, Persson KM (2012) An experimental investigation on inclined negatively buoyant jets. Water (Switzerland) 4:720–738.  https://doi.org/10.3390/w4030720 Google Scholar
  10. Bleninger T, Jirka GH (2008) Modelling and environmentally sound management of brine discharges from desalination plants. Desalination 221:585–597.  https://doi.org/10.1016/j.desal.2007.02.059 CrossRefGoogle Scholar
  11. Bloomfield LJ, Kerr RC (2002) Inclined turbulent fountains. J Fluid Mech 451:283–294.  https://doi.org/10.1017/S0022112001006528 CrossRefGoogle Scholar
  12. Christodoulou GC, Papakonstantis IG (2010) Simplified estimates of trajectory of inclined negatively buoyant jets. In: Proc. 6th International Symposium on Environmental Hydraulics. Taylor & Francis, London, pp 165–170Google Scholar
  13. Cipollina A, Brucato A, Grisafi F, Nicosia S (2005) Bench-scale investigation of inclined dense jets. J Hydraul Eng 131:1017–1022.  https://doi.org/10.1061/(ASCE)0733-9429(2005)131:11(1017) CrossRefGoogle Scholar
  14. Crowe AT (2013) Inclined negatively buoyant jets and boundary interaction. Thesis: Christchurch, New Zealand: University of CanterburyGoogle Scholar
  15. Crowe AT, Davidson MJ, Nokes RI (2016) Velocity measurements in inclined negatively buoyant jets. Environ Fluid Mech 16:503–520.  https://doi.org/10.1007/s10652-015-9435-y CrossRefGoogle Scholar
  16. Ferrari S, Querzoli G (2010) Mixing and re-entrainment in a negatively buoyant jet. J Hydraul Res 48:632–640.  https://doi.org/10.1080/00221686.2010.512778 CrossRefGoogle Scholar
  17. Fischer B, List EJ, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Academic Press, New YorkGoogle Scholar
  18. Greenshields CJ (2015) User and programmer’s guide, OpenCFDGoogle Scholar
  19. Huai W, Li Z, Qian Z et al (2010) Numerical simulation of horizontal buoyant wall jet. J Hydrodyn 22:58–65.  https://doi.org/10.1016/S1001-6058(09)60028-7 CrossRefGoogle Scholar
  20. Jiang B, Law AW, Lee JH (2014) Mixing of 30° and 45° inclined dense jets in shallow coastal waters. J Hydraul Eng 140:241–253.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0000819 CrossRefGoogle Scholar
  21. Jirka GH (2008) Improved discharge configurations for brine effluents from desalination plants. J Hydraul Eng 134:116–120.  https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(116) CrossRefGoogle Scholar
  22. Kheirkhah Gildeh H, Mohammadian A, Nistor I, Qiblawey H (2014) Numerical modeling of turbulent buoyant wall jets in stationary ambient water. J Hydraul Eng 140:4014012-1-4014012–17.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0000871
  23. Kheirkhah Gildeh H, Mohammadian A, Nistor I, Qiblawey H (2015) Numerical modeling of 30 and 45 inclined dense turbulent jets in stationary ambient. Environ Fluid Mech 15:537–562.  https://doi.org/10.1007/s10652-014-9372-1 CrossRefGoogle Scholar
  24. Kheirkhah Gildeh H, Mohammadian A, Nistor I, Qiblawey H, Yan XH (2016) CFD modeling and analysis of the behavior of 30° and 45° inclined dense jets – new numerical insights. J Appl Water Eng Res 4:112–127.  https://doi.org/10.1080/23249676.2015.1090351 CrossRefGoogle Scholar
  25. Kikkert GA, Davidson MJ, Nokes RI (2007) Inclined negatively buoyant discharges. J Hydraul Eng 133:545–554.  https://doi.org/10.1061/(ASCE)0733-9429(2007)133:5(545) CrossRefGoogle Scholar
  26. Kim DG, Cho HY (2006) Modeling the buoyant flow of heated water discharged from surface and submerged side outfalls in shallow and deep water with a cross flow. Environ Fluid Mech 6:501–518.  https://doi.org/10.1007/s10652-006-9006-3 CrossRefGoogle Scholar
  27. Lai CCK, Lee JHW (2012) Mixing of inclined dense jets in stationary ambient. J Hydro-Environment Res 6:9–28.  https://doi.org/10.1016/j.jher.2011.08.003 CrossRefGoogle Scholar
  28. Law AW-K, Ho WF, Monismith SG (2004) Double diffusive effect on desalination discharges. J Hydraul Eng 130:450–457.  https://doi.org/10.1061/(ASCE)0733-9429(2004)130:5(450) CrossRefGoogle Scholar
  29. Lee JHW (2012) Mixing of multiple buoyant jets. J Hydraul Eng 138:1008–1021.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0000560 CrossRefGoogle Scholar
  30. Lee JHW, Chu VH (2003) Turbulent jets and plumes: a lagrangian approach. Kluwer Academic Publishers, BostonGoogle Scholar
  31. Lindberg WR (1994) Experiments on negatively buoyant jets, with or without cross-flow. In: Davies PA, Valente Neves MJ (eds) Recent research advances in the fluid mechanics of turbulent jets and plumes. Kluwer, NetherlandsGoogle Scholar
  32. Millero FJ, Poisson A (1981) International one-atmosphere equation of state of seawater. Deep Sea Res Part A, Oceanogr Res Pap 28:625–629.  https://doi.org/10.1016/0198-0149(81)90122-9 CrossRefGoogle Scholar
  33. Oliver CJ, Davidson MJ, Nokes RI (2008) k-ε predictions of the initial mixing of desalination discharges. Environ Fluid Mech 8:617–625.  https://doi.org/10.1007/s10652-008-9108-1
  34. Oliver CJ, Davidson MJ, Nokes RI (2013) Predicting the near-field mixing of desalination discharges in a stationary environment. Desalination 309:148–155.  https://doi.org/10.1016/j.desal.2012.09.031 CrossRefGoogle Scholar
  35. OpenFOAM (2011) User and programmer’s guide, OpenCFDGoogle Scholar
  36. Palomar P, Lara JL, Losada IJ (2012a) Near field brine discharge modeling - part 2: validation of commercial tools. Desalination 290:28–42.  https://doi.org/10.1016/j.desal.2011.10.021 CrossRefGoogle Scholar
  37. Palomar P, Lara JL, Losada IJ et al (2012b) Near field brine discharge modelling - part 1: analysis of commercial tools. Desalination 290:14–27.  https://doi.org/10.1016/j.desal.2011.11.037 CrossRefGoogle Scholar
  38. Papakonstantis IG, Tsatsara EI (2018) Trajectory characteristics of inclined turbulent dense jets. Environ Process 5(3):539–554.  https://doi.org/10.1007/s40710-018-0307-6 CrossRefGoogle Scholar
  39. Papakonstantis IG, Christodoulou GC, Papanicolaou PN (2011a) Inclined negatively buoyant jets. 1: geometrical characteristics. J Hydraul Res 49:3–12.  https://doi.org/10.1080/00221686.2010.537153 CrossRefGoogle Scholar
  40. Papakonstantis IG, Christodoulou GC, Papanicolaou PN (2011b) Inclined negatively buoyant jets. 2: concentration measurements. J Hydraul Res 49:13–22.  https://doi.org/10.1080/00221686.2010.542617 CrossRefGoogle Scholar
  41. Papanicolaou PN, Papakonstantis IG, Christodoulou GC (2008) On the entrainment coefficient in negatively buoyant jets. J Fluid Mech 614:447–470.  https://doi.org/10.1017/S0022112008003509 CrossRefGoogle Scholar
  42. Roberts PJW, Abessi O (2014) Optimization of desalination diffusers using three-dimensional laser-induced fluorescence. Atlanta, GeorgiaGoogle Scholar
  43. Roberts PJW, Toms G (1987) Inclined dense jets in flowing current. J Hydraul Eng 113:323–340.  https://doi.org/10.1061/(ASCE)0733-9429(1987)113:3(323) CrossRefGoogle Scholar
  44. Roberts PJW, Ferrier A, Daviero G (1997) Mixing in inclined dense jets. J Hydraul Eng 123:693–699.  https://doi.org/10.1061/(ASCE)0733-9429(1997)123:8(693) CrossRefGoogle Scholar
  45. Seo W, Kim HS, Yu D, Kim DS (2001) Performance of tee diffusers in shallow water with crossflow. J Hydraul Eng 127:53–61CrossRefGoogle Scholar
  46. Shao D (2010) Desalination discharge in shallow coastal waters. Nanyang Technological UniversityGoogle Scholar
  47. Shao D, Law AWK (2010) Mixing and boundary interactions of 30o and 45o inclined dense jets. Environ Fluid Mech 10:521–553.  https://doi.org/10.1007/s10652-010-9171-2 CrossRefGoogle Scholar
  48. Sobey RJ, Johnston J, Keane RD (1989) Horizontal round buoyant jet in shallow water. J Hydraul Eng 114:910–929CrossRefGoogle Scholar
  49. Vafeiadou P, Papakonstantis I, Christodoulou G (2005) Numerical simulation of inclined negatively buoyant jets. 9th Int Conf Environ Sci Technol, Sept 1–3, Greece, Rhodes IslandGoogle Scholar
  50. Yannopoulos PC, Bloutsos AA (2012) Escaping mass approach for inclined plane and round buoyant jets. J Fluid Mech 695:81–111.  https://doi.org/10.1017/jfm.2011.564 CrossRefGoogle Scholar
  51. Zeitoun MA, Reid RO, McHilhenny WF, Mitchell TM (1970) Model studies of outfall system for desalination plants. Res Dev Prog Rep804 off saline water, US Dept Inter Washington, DCGoogle Scholar
  52. Zhang H (1997) Saline, thermal and thermal-saline buoyant jets. University of Western Ontario London, ThesisGoogle Scholar
  53. Zhang W, Zhu DZ (2011) Near-field mixing downstream of a multiport diffuser in a shallow river. J Environ Eng 137:230–240.  https://doi.org/10.1061/(ASCE)EE.1943-7870.0000327 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Water Research Institute “WRI”TehranIran
  2. 2.Civil and Environmental Engineering DepartmentK.N. Toosi University of TechnologyTehranIran

Personalised recommendations