Comparison of Different Methods for Evaluating the Hydraulics of a Pilot-Scale Upflow Anaerobic Sludge Blanket Reactor

  • J. I. Pérez Montiel
  • A. Galindo Montero
  • J. Ramírez-MuñozEmail author
Original Article


Four methods commonly used in the literature for evaluating the hydraulics of Upflow Anaerobic Sludge Blanket (UASB) reactors were compared in a pilot-scale UASB reactor (518 L). The methods are based on the analysis of the tracer concentration curve in the collection points by using ionic lithium (Li+) as a tracer. The tracer was collected at two points: in the effluent and in the sludge blanket. The methods evaluated were: (i) Qualitative analysis of the Residence Time Distribution (RTD) normalized curve (i.e., dimensionless with respect to concentration and time); (ii) empirical qualitative relations between experimental time and theoretical time by using the time-concentration tracer curve; (iii) dispersion number by using traditional equations; and (iv) dimensional axial dispersion model. The study was performed at theoretical hydraulic residence times (t0) of 600, 480, 300, 240 and 180 min. The results obtained show that the lack of criteria for defining the flow inside the reactor (plug flow, dispersed-flow or complete-mix flow) yields inconsistencies in methods (ii) and (iii). In contrast, methods (i) and (iv) are consistent with each other and can be considered as complementary. For these last two methods, it was found that there is a dispersed flow in the reactor (effluent), and a complete-mix flow in the region of the sludge bed and sludge blanket. However, method (i) is qualitative and does not relate the flow pattern with the dispersion number or Péclet number that measures the mixing magnitude or the axial dispersion in biological reactors.


Hydraulic evaluation Residence time distribution Tracer UASB reactor Shortcut flow Dead zones 



The authors thank the University of La Guajira-Colombia, the Department of Sanitary and Environmental Engineering and the Center for Water Research of the University of Zulia-Venezuela for the financial support of this project, as well as Yesenia Zuñiga Mendoza for her technical contribution.


  1. APHA, AWWA, WEF (2005) American Public Health Association, American Water Works Association, Water Environment Federation. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, 20a ed, Washington, EUAGoogle Scholar
  2. Batstone DJ (2006) Mathematical modelling of anaerobic reactors treating domestic wastewater: rational criteria for model use. Rev Environ Sci Biotechnol 5:57–71. CrossRefGoogle Scholar
  3. Batstone DJ, Hernandez JLA, Schmidt JE (2005) Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 91(3):387–391. CrossRefGoogle Scholar
  4. Bittante A, García-Serna J, Biasi P, Sobrón F, Salmi T (2014) Residence time and axial dispersion of liquids in trickle bed reactors at laboratory scale. Chem Eng J 250:99–111. CrossRefGoogle Scholar
  5. Bolle WL, van Breugel J, van Eyebergen GC, Kossen NWF, Zoetemeyer RJ (1986) Modelling the liquid flow in up-flow anaerobic sludge blanket reactors. Biotechnol Bioeng 28(11):1615–1620. CrossRefGoogle Scholar
  6. Cervantes-Zepeda AI, Cruz-Colín MR, Aguilar-Corona R, Castilla-Hernández P, Meraz-Rodríguez M (2011) Physicochemical and microbial characterization of the treated wastewater in a pilot scale UASB reactor. Rev Mex Ing Quím 10(1):67–77Google Scholar
  7. Chen Y, HeJ MY, Huo YC, Zhang Z, Kotsopoulos T, Zeng R (2015) Mathematical modeling of upflow anaerobic sludge blanket (UASB) reactors: simultaneous accounting for hydrodynamics and bio-dynamics. Chem Eng Sci 137:677–684. CrossRefGoogle Scholar
  8. Chong S, Sen TK, Kayaalp A, Ang HM (2012) The performance enhancement of up-flow anaerobic sludge blanket reactors for domestic sludge treatment – a state-of-the-art review. Water Res 46:3434–3470. CrossRefGoogle Scholar
  9. Danckwerts PV (1953) Continuous flow systems: distribution of residence times. Chem Eng Sci 2(1):1–13. CrossRefGoogle Scholar
  10. Das S, Chaudhari S (2015) Effect of reactor configuration on performance during anaerobic treatment of low strength wastewater. Environ Technol 36(18):2312–2318. CrossRefGoogle Scholar
  11. De Carvalho K (2006) Resposta dinâmica de reator UASB em escala piloto submetido a cargas orgânicas e hidráulicas cíclicas: modelos matemáticos e resultados experimentais. Tese de Doutorado. Universidade de São Carlo, Brasil. Accessed 25 June 2018
  12. Elgeti K (1996) A new equation for correlating a pipe flow reactor with a cascade of mixed reactors. Chem Eng Sci 51(23):5077–5080. CrossRefGoogle Scholar
  13. Ji YX, Xing BS, Yang GF, Ni WM, Guo LX, Jin RC (2014) Performance and hydrodynamic features of a staged up-flow ANAMMOX sludge bed (SUASB) reactor. Chem Eng J 253:298–304. CrossRefGoogle Scholar
  14. Jojoa GD, Rodríguez HL, Cardona S (2014) Caracterización y modelación del comportamiento hidráulico de un reactor UASB. Revista EIA 11(22):67–75Google Scholar
  15. Kim S, Kim C (1983) Axial dispersion characteristics of three phase fluidized beds. J Chem Eng of Jpn 7(3):182–187. Google Scholar
  16. Kreft A, Zuber A (1978) On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chem Eng Sci 33(11):1471–1480. CrossRefGoogle Scholar
  17. Kreutz C, Carvalho KQ, De PFH, Belini AD, Cordovil CSD, CMS GSD (2018) Impact of the hydraulic loading rate on the hydrodynamic characteristics of an anaerobic fixed bed reactor treating cattle slaughterhouse wastewater. Engenharia Agrícola 28(3):403–410. CrossRefGoogle Scholar
  18. La Motta E (1999) Dynamic model for UASB reactor including reactor hydraulics, reaction, and diffusion. Discuss J Environ Eng 125(8):786–787. CrossRefGoogle Scholar
  19. Levenspiel O (1999) Chemical Reaction Engineering. John Wiley & Sons, 3rd ed, New York, EUAGoogle Scholar
  20. Levenspiel O, Smit WK (1957) Notes on the diffusion-type model for the longitudinal mixing of fluids in flow. Chem Eng Sci 50(24):3891–3896. CrossRefGoogle Scholar
  21. Li SA, Nan J, Li HY, Yao M (2015) Comparative analyses of hydraulic characteristics between the different structures of two anaerobic baffled reactors (ABRs). Ecol Eng 82:138–144. CrossRefGoogle Scholar
  22. Lindmark J, Thorin E, Bel Fdhila R, Dahlquist E (2014) Effects of mixing on the result of anaerobic digestion: review. Renew Sust Energ Rev 40:1030–1047. CrossRefGoogle Scholar
  23. López I, Borzacconi L (2010) UASB reactor hydrodynamics: residence time distribution and proposed modelling tools. Environ Technol 31(6):591–600. CrossRefGoogle Scholar
  24. Lou SJ, Tartakovsky B, Zeng Y, Wu P, Guiot SR (2006) Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor. Chemosphere 65(7):1212–1220. CrossRefGoogle Scholar
  25. Mansouri Y, Zinatizadeh AA, Mohammadi P, Irandoust M, Akhbari A, Davoodi R (2012) Hydraulic characteristics analysis of an anaerobic rotatory biological contactor (AnRBC) using tracer experiments and response surface methodology (RSM). Korean J Chem Eng 29(7):891–902. CrossRefGoogle Scholar
  26. Martin A (2000) Interpretation of residence time distribution data. Chem Eng Sci 55(23):5907–5917. CrossRefGoogle Scholar
  27. Nnaji CC (2014) A review of the upflow anaerobic sludge blanket reactor. Desalin Water Treat 52(22–24):4122–4143. CrossRefGoogle Scholar
  28. Palma M, Giudici R (2003) Analysis of axial dispersion in an oscillatory-flow continuous reactor. Chem Eng J 94:189–198. CrossRefGoogle Scholar
  29. Pant HJ, Goswami S, Samantray JS, Sharma VK, Maheshwari NK (2015) Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique. Appl Radiat Isot 10:54–60. CrossRefGoogle Scholar
  30. Peña M, Mara D, Avella G (2006) Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates. Water Res 40(3):445–452. CrossRefGoogle Scholar
  31. Pérez J, Aldana G (2013) Modelación física de un reactor anaerobio de flujo ascendente (RAFA). Revista Técnica de Ingeniería Universidad del Zulia 36(2):153–163Google Scholar
  32. Pérez J, Rincón N, Bracho N (2011) Evaluación de la adsorción de rodamina WT, litio y cloruro en reactores por carga inoculados con lodo anaerobio. Revista Facultad de Ingeniería Universidad de Antioquia 58:74–84Google Scholar
  33. Pérez J, Aldana G, Arguello G (2016a) Modelo de Dispersión Axial para Sistemas de Flujo Continuo Ajustado a las Condiciones de Borde. Información Tecnológica 27(1):169–180. CrossRefGoogle Scholar
  34. Pérez J, Aldana G, Rojano R (2016b) Evaluación hidráulica de un reactor anaerobio de flujo ascendente (RAFA) usando un modelo de dispersión axial. Revista Internacional de Contaminación Ambiental 32(3):281–291. CrossRefGoogle Scholar
  35. Pérez-Carrión J (1992) Flow analysis and factors that determine retention periods, Volume II. Evaluation Manual (Análisis de flujos y factores que determinan los periodos de retención, tomo II. Manual de evaluación). Programa Regional HPE/OPS/CEPIS de Mejoramiento de la Calidad del Agua para Consumo Humano. Lima, CEPIS/OPS. Accessed 25 January 2018
  36. Plascencia-Jatomea R, Almazán-Ruiz F, Gómez J, Rivero E, Monroy O, González I (2015) Hydrodynamic study of a novel membrane aerated biofilm reactor (MABR): tracer experiments and CFD simulation. Chem Eng Sci 138:324–332. CrossRefGoogle Scholar
  37. Qi WK, Guo YL, Xue M, Li YY (2013) Hydraulic analysis of an upflow sand filter: tracer experiments, mathematical model and CFD computation. Chem Eng Sci 104:460–472. CrossRefGoogle Scholar
  38. Ramakrishnan A, Surampalli RY (2012) Comparative performance of UASB and anaerobic hybrid reactors for the treatment of complex phenolic wastewater. Bioresour Technol 123:352–359. CrossRefGoogle Scholar
  39. Ren T, Mua Y, Yu H, Harada H, Li Y (2008) Dispersion analysis of an acidogenic UASB reactor. Chem Eng J 142(2):182–189. CrossRefGoogle Scholar
  40. Renuka R, Mariraj Mohan S, Amal Raj S (2015) Hydrodynamic behaviour and its effects on the treatment performance of panelled anaerobic baffle-cum filter reactor. Int J Environ Sci Technol 13(1):307–318. CrossRefGoogle Scholar
  41. Rodríguez-Gómez R, Renman G, Moreno L, Liu L (2013) A model to predict the behavior of UASB reactors. Int J Environ Res 7(3):605–614. Google Scholar
  42. Sánchez J, Cardona GS (2009) Evaluación del comportamiento hidráulico de un reactor aerobio y un reactor anaerobio, en una planta de tratamiento de aguas residuales doméstica de pequeña escala. Avances en Recursos Hidráulicos 20:65–80Google Scholar
  43. Singhal A, James G, Praveen V, Ramachandran K (1998) Axial dispersion model for upflow anaerobic sludge blanket reactors. Biotechnol Prog 14(4):645–648. CrossRefGoogle Scholar
  44. Smith LC, Elliot DJ, James A (1993) Characterisation of mixing patterns in an anaerobic digester by means of tracer curve analysis. Ecol Model 69(3–4):267–285. CrossRefGoogle Scholar
  45. Vadlani PV, Ramachandran KB (2008) Evaluation of UASB reactor performance during start-up operation using synthetic mixed-acid waste. Bioresour Technol 99(17):8231–8236. CrossRefGoogle Scholar
  46. Van Der Meer RR, Heertjes PM (1983) Mathematical description of anaerobic treatment of wastewater in upflow reactors. Biotechnology and Bioengineering XXV 25:2531–2556. CrossRefGoogle Scholar
  47. Van Hulle SWH, Vesvikar M, Poutiainen H, Nopens I (2014) Importance of scale and hydrodynamics for modeling anaerobic digester performance. Chem Eng J 255:71–77. CrossRefGoogle Scholar
  48. Wahl MD, Brown LC, Soboyejo AO, Martin J, Dong B (2010) Quantifying the hydraulic performance of treatment wetlands using the moment index. Ecol Eng 36(12):1691–1699. CrossRefGoogle Scholar
  49. Wu MM, Hickey RF (1997) Dynamic model for UASB reactor including reactor hydraulics, reaction, and diffusion. J Environ Eng 123(3):244–252. CrossRefGoogle Scholar
  50. Zeng Y, Mu S, Lou S, Tartakovsky B, Guiot P, Wu P (2005) Hydraulic modeling and axial dispersion analysis of UASB reactor. Biochem Eng J 25:113–123. CrossRefGoogle Scholar
  51. Zheng MX, Wang KJ, Zuo JE, Yan Z, Fang H, Yu JW (2012) Flow pattern analysis of a full-scale expanded granular sludge bed-type reactor under different organic loading rates. Bioresour Technol 107:33–40. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. I. Pérez Montiel
    • 1
  • A. Galindo Montero
    • 1
  • J. Ramírez-Muñoz
    • 2
    Email author
  1. 1.Grupo de Investigación GISA, Facultad de IngenieríaUniversidad de La GuajiraRiohachaColombia
  2. 2.Departamento de EnergíaUniversidad Autónoma Metropolitana-AzcapotzalcoCiudad de MéxicoMexico

Personalised recommendations