Journal of Computers in Education

, Volume 6, Issue 1, pp 53–78 | Cite as

VReanimate II: training first aid and reanimation in virtual reality

  • Kristina BucherEmail author
  • Tim Blome
  • Stefan Rudolph
  • Sebastian von Mammen


First aid saves lives and reanimation is an important part of it. In order to be able to perform the correct steps in emergency situations, appropriate behaviors must be learned and trained by as many people as possible. Nevertheless, easily accessible training opportunities are quite rare. We therefore developed a virtual reality (VR) application, VReanimate, that teaches about aspects of first aid in a controlled digital environment. In the first part of this article, we describe related work and conceptual and implementation details of our approach, that is based on a non-textual and situated training in authentic scenarios. In the second part of this article, we present an evaluation of the system, including results concerning its usability and effects on the knowledge gain of different users. Conducting a mixed methods study, we were able to observe a significant improvement in regard to knowledge about correct procedures in emergency situations and could confirm our hypothesis, that a non-textual and situated design can be helpful for this purpose.


Virtual reality Learning First aid Situated learning 



We would like to thank Markus Görlich for carrying out several of the experiments conducted for this work.


  1. Bailenson, J. N., Yee, N., Blascovich, J., Beall, A. C., Lundblad, N., & Jin, M. (2008). The use of immersive virtual reality in the learning sciences: Digital transformations of teachers, students, and social context. The Journal of the Learning Sciences, 17(1), 102–141.
  2. Bainbridge, W. (2004). Berkshire encyclopedia of human–computer interaction. No. Bd. 1 in Berkshire encyclopedia of human–computer interaction. Barrington: Berkshire Publishing Group.Google Scholar
  3. Blome, T., Diefenbach, A., Rudolph, S., Bucher, K., & von Mammen, S. (2017). Vreanimate: Non-verbal guidance and learning in virtual reality. In 2017 9th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games) (pp. 23–30).Google Scholar
  4. Boettiger, B., & Van Aken, H. (2015). Training children in cardiopulmonary resuscitation worldwide. The Lancet, 385, 2353.CrossRefGoogle Scholar
  5. Brooks, F. P. (1999). What’s real about virtual reality? IEEE Computer Graphics and Applications, 19(6), 16–27.CrossRefGoogle Scholar
  6. Brown, K., & Gerhard, M. (2006). Formative evaluation: An integrative practice model and case study. Personnel Psychology, 55(4), 951–983.CrossRefGoogle Scholar
  7. Cheung, B. M. Y., Ho, C., Kou, K. O., Kuong, E. Y. L., Lai, K. W., Leow, P. L., et al. (2003). Knowledge of cardiopulmonary resuscitation among the public in Hong Kong: Telephone questionnaire survey. Hong Kong Medical Journal, 9(5), 323–328.Google Scholar
  8. Collins, D. (2003). Pretesting survey instruments: An overview of cognitive methods. Quality of Life Research, 12(3), 229–238.CrossRefGoogle Scholar
  9. Colt, H. G., Crawford, S. W., & Galbraith, O. (2001). Virtual reality bronchoscopy simulation: A revolution in procedural training. CHEST Journal, 120(4), 1333–1339.CrossRefGoogle Scholar
  10. Creswell, P., & Plano, C. (2007). Designing and conducting mixed methods research. Thousand Oaks: Sage.Google Scholar
  11. Dawley, L., & Dede, C. (2014). Situated learning in virtual worlds and immersive simulations. In Handbook of research on educational communications and technology (pp. 723–734). Berlin: Springer.Google Scholar
  12. Dubovi, I., Levy, S., & Dagan, E. (2016). PILL-VR simulation learning environment for teaching medication administration to nursing students. In Proceedings of the 11th CHAIS conference for the study of innovation and learning technologies: Learning in the technological era (pp. 15–24)Google Scholar
  13. Fischer, M., Lang, S., Wnent, S., Seewald, S., Brenner, S., Jantzen, T., Bohn, A., & Gräsner, A. T. (2017). Laien- und telefon-cpr verkürzen das reanimationsfreie intervall und steigern das langzeitüberleben - eine analyse aus dem deutschen reanimationsregister. In 13. Wissenschaftliche Arbeitstage Notfallmedizin der DGAI, Aktiv Druck & Verlag, Anästh Intensivmed 2017 (pp. 63–64)Google Scholar
  14. Frank, B. (2014). Presence messen in laborbasierter Forschung mit Mikrowelten: Entwicklung und erste Validierung eines Fragebogens zur Messung von Presence. Wiesbaden: Springer Fachmedien Wiesbaden.Google Scholar
  15. Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: State of the art. In Rethinking education by leveraging the eLearning pillar of the Digital Agenda for Europe: Proceedings of the 11th international scientific conference eLearning and software for education, Bucharest (Vol. 1, pp. 133–141).Google Scholar
  16. Hedberg, J., & Alexander, S. (1994). Virtual reality in education: Defining researchable issues. Educational Media International, 31(4), 214–220.CrossRefGoogle Scholar
  17. Herrington, J., & Oliver, R. (1995). Critical characteristics of situated learning: Implications for the instructional design of multimedia. In ASCILITE 1995 Conference (pp. 253–262).Google Scholar
  18. Huang, H., & Liaw, S. (2011). Applying situated learning in a virtual reality system to enhance learning motivation. International Journal of Information and Education Technology, 1, 298–302.CrossRefGoogle Scholar
  19. Huppert, S., Kaup, G., Broschewitz, J., Sommer, G., Gockel, I., & Hau, H. (2016). Entwicklung neuer trainingsstrategien (blended learning) in der medizin am beispiel der virtual-reality-laparaskopie simulation. Zeitschrift für Gastroenterologie, 54(08), KV125Google Scholar
  20. Klauer, K. J. (1999). Gasteditorial: Situated learning: Paradigmenwechsel oder alter wein in neuen schläuchen? Zeitschrift für Pädagogische Psychologie, 13(3), 117–121. Scholar
  21. Lugrin, J. L., Latoschik, M., Habel, M., Roth, D., Seufert, C., & Grafe, S. (2016). Breaking bad behaviors: A new tool for learning classroom management using virtual reality. Frontiers in ICT, 3, 26.CrossRefGoogle Scholar
  22. Razali, N. M., & Yap, Y. B. (2011). Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. Journal of Statistical Modeling and Analytics, 2, 21–33.Google Scholar
  23. Mantovani, F., Castelnuovo, G., Gaggioli, A., & Riva, G. (2003). Virtual reality training for health-care professionals. CyberPsychology & Behavior, 6(4), 389–395.CrossRefGoogle Scholar
  24. Mayring, P. (2015). Qualitative Inhaltsanalyse: Grundlagen und Techniken. BeltzGoogle Scholar
  25. Miles, S. (1969). First-aid training. British Medical Journal, 4(5681), 485.CrossRefGoogle Scholar
  26. Moore, P. (1995). Learning and teaching in virtual worlds: Implications of virtual reality for education. Australian Journal of Educational Technology, 11(2), 91–102.
  27. Moussaïd, M., Kapadia, M., Thrash, T., Sumner, R. W., Gross, M., Helbing, D., et al. (2016). Crowd behaviour during high-stress evacuations in an immersive virtual environment. Journal of The Royal Society Interface, 13(122), 20160414.CrossRefGoogle Scholar
  28. Muller, N., Panzoli, D., Galaup, M., Lagarrigue, P., & Jessel, J. (2017). Learning mechanical engineering in a virtual workshop: A preliminary study on utilisability, utility and acceptability. In 2017 9th international conference on virtual worlds and games for serious applications (VS-Games) (pp. 55–62).Google Scholar
  29. Müller, A., Breckwoldt, J., Comploi, M., Hötzel, J., Lintner, L., Rammlmair, G., et al. (2014). Videogestütztes landesweites reanimationstraining: Evaluation des lernerfolgs bei 2642 schülern in südtirol. Notfall & Rettungsmedizin, 17, 7–16.CrossRefGoogle Scholar
  30. Perkins, G. D., Handley, A. J., Koster, R. W., Castrén, M., Smyth, M. A., Olasveengen, T., et al. (2015). European resuscitation council guidelines for resuscitation 2015: Section 2. Adult basic life support and automated external defibrillation. Resuscitation, 95, 81–99.CrossRefGoogle Scholar
  31. Resusciation Council UK (2017) Lifesaver vr.
  32. Ruthenbeck, G. S., & Reynolds, K. J. (2015). Virtual reality for medical training: The state-of-the-art. Journal of Simulation, 9(1), 16–26.CrossRefGoogle Scholar
  33. Schuemie, M. J., Van Der Straaten, P., Krijn, M., & Van Der Mast, C. A. (2001). Research on presence in virtual reality: A survey. CyberPsychology & Behavior, 4(2), 183–201.CrossRefGoogle Scholar
  34. Seymour, N. E., Gallagher, A. G., Roman, S. A., O’brien, M. K., Bansal, V. K., Andersen, D. K., et al. (2002). Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Annals of Surgery, 236(4), 458–464.CrossRefGoogle Scholar
  35. Shneiderman, B. (2010). Designing the user interface: Strategies for effective human–computer interaction. Delhi: Pearson Education.Google Scholar
  36. Shneiderman, B., & Plaisant, C. (2004). Designing the user interface: Strategies for effective human–computer interaction (4th ed.). Upper Saddle River: Pearson.Google Scholar
  37. Shroff, R., Deneen, C., & Ng, E. (2011). Analysis of the technology acceptance model in examining students’ behavioural intention to use an e-portfolio system. Australasian Journal of Educational Technology. Scholar
  38. Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments (five): Speculations on the role of presence in virtual environments. Presence: Teleoperators and Virtual Environments, 6(6), 603–616.CrossRefGoogle Scholar
  39. Steen, S., Liao, Q., Pierre, L., Paskevicius, A., & Sjöberg, T. (2003). The critical importance of minimal delay between chest compressions and subsequent defibrillation: A haemodynamic explanation. Resuscitation, 58(3), 249–258.CrossRefGoogle Scholar
  40. Stevens, J. A., & Kincaid, J. (2015). The relationship between presence and performance in virtual simulation training. Open Journal of Modelling and Simulation, 3, 41–48.CrossRefGoogle Scholar
  41. Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational Research, 81(1), 4–28.CrossRefGoogle Scholar
  42. Trappe, H. J., & Arntz, H. R. (2011). Lebensbedrohliche herzrhythmusstörungen. Notfall+ Rettungsmedizin, 14(2), 93–94.CrossRefGoogle Scholar
  43. von Mammen, S., Weber, M., Opel, H., & Davison, T. (2015). Interactive multi-physics simulation for endodontic treatment. In: Modeling and Simulation in Medicine Symposium at SpringSim 2015 (pp. 36–41). Tampa: Curran Associates, Inc.Google Scholar
  44. Wanke, S., Strack, M., Dählmann, C., Kuhr, K., Zobel, C., & Reuter, H. (2018). Defi macht schule: Implementierung eines curriculums zum thema reanimation an weiterführenden schulen. Wiener Medizinische Wochenschrift.Google Scholar
  45. Warnick, B. R., & Burbules, N. C. (2007). Media comparison studies: Problems and possibilities. Teachers College Record, 109(11), 2483–2510.Google Scholar
  46. Winn, W. (1993). A conceptual basis for educational applications of virtual reality.
  47. Youngblut, C., Huie, O. (2003). The relationship between presence and performance in virtual environments: Results of a verts study. In Proceedings of the IEEE Virtual Reality 2003, IEEE Computer Society, VR’03.Google Scholar
  48. Zajtchuk, R., & Satava, R. (1997). Medical applications of virtual reality. Communications of the ACM, 40(9), 63–64.CrossRefGoogle Scholar

Copyright information

© Beijing Normal University 2018

Authors and Affiliations

  1. 1.Chair for School PedagogyJulius-Maximilians UniversityWürzburgGermany
  2. 2.Organic Computing GroupUniversity of AugsburgAugsburgGermany
  3. 3.Human-Computer-InteractionJulius-Maximilians UniversityWürzburgGermany

Personalised recommendations