Advertisement

Taelman L-values for Drinfeld modules over Tate algebras

  • Oğuz GezmişEmail author
Research
  • 9 Downloads

Abstract

In the present paper, we investigate Taelman L-values corresponding to Drinfeld modules over Tate algebras of arbitrary rank. Using our results, we also introduce an L-series converging in Tate algebras which can be seen as a generalization of Pellarin L-series.

Keywords

Drinfeld modules Tate algebras Pellarin L-series Taelman L-values 

Mathematics Subject Classification

Primary 11M38 Secondary 11G09 11R58 

Notes

Acknowledgement

The author is thankful to Matthew A. Papanikolas for useful suggestions and fruitful discussions. The author also thanks referees for careful reading and ideas on presenting results in a clear way.

References

  1. 1.
    Anderson, G.W.: Log-algebraicity of twisted \(A\)-harmonic series and special values of \(L\)-series in characteristic \(p\). J. Number Theory 60(1), 165–209 (1996)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Anglès, B., Pellarin, F.: Functional identities for \(L\)-series values in positive characteristic. J. Number Theory 142, 223–251 (2014)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Anglès, B., Pellarin, F., Tavares Ribeiro, F.: Arithmetic of positive characteristic \(L\)-series values in Tate algebras. With an appendix by F. Demeslay. Compos. Math. 152(1), 1–61 (2016)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Anglès, B., Pellarin, F., Tavares Ribeiro, F.: Anderson–Stark units for \(\mathbb{F} _q[\theta ]\). Trans. Am. Math. Soc. 370(3), 1603–1627 (2018)zbMATHGoogle Scholar
  5. 5.
    Anglès, B., Taelman, L.: Arithmetic of characteristic \(p\) special \(L\)-values. With an appendix by V. Bosser. Proc. Lond. Math. Soc. (3) 110(4), 1000–1032 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Anglès, B., Tavares Ribeiro, F.: Arithmetic of function field units. Math. Ann. 367, 501–579 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Brownawell, W.D.: Linear independence and divided derivative of a Drinfeld module. I. In: Number Theory in Progress, vol. 1, pp. 47–61 (Zakopane-Kościelisko, 1997). de Gruyter, Berlin (1999)Google Scholar
  8. 8.
    Chang, C.-Y., El-Guindy, A., Papanikolas, M.A.: Log-algebraic identities on Drinfeld modules and special \(L\)-values. J. Lond. Math. Soc. (2) 97, 125–144 (2018)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Demeslay, F.: A class formula for \(L\)-series in positive characteristic. arXiv:1412.3704 (2014)
  10. 10.
    Dummit, D.S., Foote, R.M.: Abstract Algebra. Wiley, London (2004)zbMATHGoogle Scholar
  11. 11.
    El-Guindy, A., Papanikolas, M.A.: Explicit formulas for Drinfeld modules and their periods. J. Number Theory 133(6), 1864–1886 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    El-Guindy, A., Papanikolas, M.A.: Identities for Anderson generating functions for Drinfeld modules. Monatshefte Math. 173(3–4), 471–493 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fine, N.J.: Binomial coefficients modulo a prime. Am. Math. Mon. 54(10), 589–592 (1947)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gekeler, E.-U.: On finite Drinfeld modules. J. Algebra 141(2), 167–182 (1991)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gezmiş, O., Papanikolas, M.A.: The de Rham isomorphism for Drinfeld modules over Tate algebras. arXiv:1805.05386 (2018)
  16. 16.
    Goss, D.: Basic Structures of Function Field Arithmetic. Springer, Berlin (1996)zbMATHCrossRefGoogle Scholar
  17. 17.
    Goss, D.: On the \(L\)-series of F. Pellarin. J. Number Theory 133, 955–962 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lee, H.L.: Power sums of polynomials in a Galois field. Duke Math. J. 10(2), 277–292 (1943)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Papanikolas, M.A.: Log-algebraicity on tensor powers of the Carlitz module and special values of Goss \(L\)-functions, In preparationGoogle Scholar
  20. 20.
    Pellarin, F.: Values of certain \(L\)-series in positive characteristic. Ann. Math. (2) 176(3), 2055–2093 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Pellarin, F.: On a variant of Schanuel conjecture. J. Théor. Nr. Bordx. 29(3), 845–873 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Perkins, R.: On Pellarin \(L\)-series. Proc. Am. Math. Soc. 142, 3355–3368 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Taelman, L.: Special \(L\)-values of Drinfeld modules. Ann. Math. 75, 369–391 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Thakur, D.S.: Function Field Arithmetic. World Scientific Publishing, River Edge (2004)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations