Advertisement

Analysis of a singular Boussinesq model

  • Alexander Kiselev
  • Hang YangEmail author
Research
  • 33 Downloads

Abstract

Recently, a new singularity formation scenario for the 3D axi-symmetric Euler equation and the 2D inviscid Boussinesq system has been proposed by Hou and Luo (Multiscale Model Simul 12(4):1722–1776, 2014, PNAS 111(36):12968–12973, 2014) based on extensive numerical simulations. As the first step to understand the scenario, models with simplified sign-definite Biot–Savart law and forcing have recently been studied in Choi et al. (Commun Pure Appl Math 70(11):2218–2243, 2017, Commun Math Phys 334:1667–1679, 2015), Do et al. (J Nonlinear Sci, 2016. arXiv:1604.07118), Hoang et al. (J Differ Equ 264:7328–7356, 2018), Hou and Liu (Res Math Sci 2, 2015), Kiselev and Tan (Adv Math 325:34–55, 2018). In this paper, we aim to bring back one of the complications encountered in the original equation—the sign changing kernel in the Biot–Savart law. This makes analysis harder, as there are two competing terms in the fluid velocity integral whose balance determines the regularity properties of the solution. The equation we study here is based on the CKY model introduced in Choi et al. (2015). We prove that finite time blow up persists in a certain range of parameters.

Notes

Acknowledgements

Both authors gratefully acknowledge partial support of the NSF-DMS Grant 1712294. HY thanks Duke University for its hospitality. We thank the anonymous referees for useful suggestions to improve the paper.

References

  1. 1.
    Adhikari, D., Cao, C., Wu, J.: The 2D Boussinesq equations with vertical viscosity and vertical diffusivity. J. Differ. Equ. 249, 1078–1088 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adhikari, D., Cao, C., Wu, J.: Global regularity results for the 2D Boussinesq equations with vertical dissipation. J. Differ. Equ. 251, 1637–1655 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beale, T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203(2), 497–513 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Choi, K., Kiselev, A., Yao, Y.: Finite time blow up for a 1D model of 2D Boussinesq system. Commun. Math. Phys. 334, 1667–1679 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Choi, K., Hou, T.Y., Kiselev, A., Luo, G., Sverak, V., Yao, Y.: On the finite-time blowup of a one-dimensional model for the three-dimensional axisymmetric Euler equations. Commun. Pure Appl. Math. 70(11), 2218–2243 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Do, T., Kiselev, A., Xu, X.: Stability of blow up for a 1D model of axi-symmetric 3D Euler equation. J. Nonlinear Sci. Preprint arXiv:1604.07118 (2016)
  8. 8.
    Doering, C., Wu, J., Zhao, K., Zheng, X.: Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion. Phys. D Nonlinear Phenom. 376–377, 144–159 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dong, B., Wang, B., Wu, J., Zhang, H.: Global regularity results for the climate model with fractional dissipation. Discrete Contin. Dyn. Syst. B 24, 211–229 (2019)zbMATHGoogle Scholar
  10. 10.
    Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, London (1982)Google Scholar
  11. 11.
    Hoang, V., Orcan, B., Radosz, M., Yang, H.: Blow up with vorticity control for a 2D model of the Boussinesq equations. J. Differ. Equ. 264, 7328–7356 (2018)CrossRefGoogle Scholar
  12. 12.
    Hou, T.Y., Li, C.: Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. Ser. A 12, 1–12 (2005)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hou, T.Y., Liu, P.: Self-similar singularity of a 1D model for the 3D axisymmetric Euler equations. Res. Math. Sci. 2, 5 (2015).  https://doi.org/10.1186/s40687-015-0021-1
  14. 14.
    Hou, T.Y., Luo, G.: Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigation. Multiscale Model. Simul. 12(4), 1722–1776 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hou, T.Y., Luo, G.: Potentially singular solutions of the 3D axisymmetric Euler equations. PNAS 111(36), 12968–12973 (2014)CrossRefGoogle Scholar
  16. 16.
    Kiselev, A., Šverák, V.: Small scale creation for solutions of the incompressible two dimensional Euler equation. Ann. Math. (2) 180(3), 1205–1220 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kiselev, A., Tan, C.: Finite time blow up in the hyperbolic Boussinesq system. Adv. Math. 325, 34–55 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  19. 19.
    Pedlosky, J.: Geophysical Fluid Dyanmics. Springer, New York (1987)CrossRefGoogle Scholar
  20. 20.
    Saw, E.-W., et al.: Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow. Nat. Commun. 7, Article number 12466 (2016)Google Scholar
  21. 21.
    Wu, J., Xu, X., Ye, Z.: The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion. J. Math. Pures Appl. 115, 187–217 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yang, W., Jiu, Q., Wu, J.: The 3D incompressible Boussinesq equations with fractional partial dissipation. Commun. Math. Sci. 16(3), 617–633 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yudovich, V.I.: Eleven great problems of mathematical hydrodynamics. Mosc. Math. J. 3, 711–737 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsDuke UniversityDurhamUSA
  2. 2.Department of MathematicsRice UniversityHoustonUSA

Personalised recommendations