Maass wave forms, quantum modular forms and Hecke operators

  • Seewoo LeeEmail author
Part of the following topical collections:
  1. Modular Forms are Everywhere: Celebration of Don Zagier’s 65th Birthday


We prove that Cohen’s Maass wave form and Li–Ngo–Rhoades’ Maass wave form are Hecke eigenforms with respect to certain Hecke operators. As a corollary, we find new identities of the pth coefficients of these Maass wave forms in terms of pth root of unity.



This is part of the author’s M.S. thesis paper. The author is grateful to his advisor Y. Choie for her helpful advice. The author is also grateful to J. Lovejoy for his comments via email.


  1. 1.
    Andrews, G.E.: Questions and conjectures in partition theory. Am. Math. Month. 93, 708–711 (1986)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andrews, G.E.: Ramanujan’s ”Lost” notebook V: Euler’s partition identity. Adv. Math. 61, 156–184 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andrews, G.E., Dyson, F.J., Hickerson, D.: Partitions and indefinite quadratic forms. Invent. Math. 91, 391–407 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bringmann, K., Lovejoy, J., Rolen, L.: On some special families of \(q\)-hypergeometric Maass forms. Int. Math. Res. Not. 18, 5537–5561 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bringmann, K., Rolen, L.: Half-integral weight Eichler integrals and quantum modular forms. J. Number Theory 161, 240–254 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bruggeman, R.W.: Quantum Maass forms. In: The Conference on \(L\)-functions, pp. 1–15 (2007)Google Scholar
  7. 7.
    Bruggeman, R.W., Choie, Y., Diamantis, N.: Holomorphic Automorphic Forms and Cohomology. Memoirs of the American Mathematical Society, 1212 (2018)Google Scholar
  8. 8.
    Cohen, H.: q-identities for Maass wave forms. Invent. Math. 91, 409–422 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Corson, D., Favero, D., Liesinger, K., Zubairy, S.: Characters and \(q\)-series in \(\mathbb{Q}(\sqrt{2})\). J. Number Theory 107, 392–405 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Diamond, F., Shurman, J.: A First Course in Modular Forms, Graduate Texts in Mathematics. Springer, Berlin (2005)zbMATHGoogle Scholar
  11. 11.
    Hejhal, D.A.: The Selberg Trace Formula for \({\rm PSL}(2,\mathbb{R})\). Springer, Berlin (2006)Google Scholar
  12. 12.
    Lee, S.: Quantum modular forms and Hecke operators. Res. Number Theory 4, 18 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lewis, J.B., Zagier, D.: Period functions for Maass wave forms. I. Ann. Math. 153, 191–258 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, Y., Ngo, H.T., Rhoades, R.C.: Renormalization and quantum modular forms, part I: Maass wave forms (2013). arXiv:1311.3043
  15. 15.
    Strömberg, F.: Computational aspects of Maass wave forms. Ph.D. thesis, Uppsala University (2004)Google Scholar
  16. 16.
    Strömberg, F.: Hecke operators for Maass wave forms on \({\rm PSL}(2,\mathbb{Z})\) with integer weight and eta multiplier. Int. Math. Res. Not. (2017).
  17. 17.
    Strömberg, F.: Computation of Maass wave forms with nontrivial multiplier systems. Math. Comput. 77, 2375–2416 (2008)CrossRefGoogle Scholar
  18. 18.
    Wohlfahrt, K.: Über Operatoren Heckescher Art bei Modulformen reeller Dimension. Math. Nachrichten 16, 233–256 (1957)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zagier, D.: Quantum modular forms. Clay Math. Proc. 12, 659–675 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.University of California BerkeleyBerkeleyUSA

Personalised recommendations