Advertisement

Wind Turbine’s Gearbox Aided Design Approach Using Bond Graph Methodology and Monte Carlo Simulation

  • Naima JouilelEmail author
  • Mohammed Radouani
  • Benaissa El Fahime
Regular Paper
  • 17 Downloads

Abstract

Uncertainties in geared products vary according to different levels; there are design uncertainties (physical assumptions, parameters estimations, etc.), manufacturing errors (cutting defects, assembly errors, defects due to heat treatments, etc.) and operating errors such as lubrication. In this paper, uncertainties effect on the transmitted power within a 750 kW Horizontal Axis Wind Turbine gearbox is investigated. A methodology for transmission chain modelling and parametric synthesis in the design phase is detailed. It is based on Bond Graph theory to establish uncertain physical model and Monte Carlo Simulation to conduct a parametric synthesis allowing the definition of each parameter’s interval of variation. After model verification by means of 20-Sim (Controllab product), power gap reveals a variation of 34.87 kW around the nominal value. In addition, Monte Carlo Simulation allows the prediction of each parameter variation effect on the torque transmitted to the induction machine. Study’s results will provide designers with information to conduct a robust design and then achieve high machine’s efficiency.

Keywords

Bond graph Gearbox Monte Carlo simulation Uncertainties Wind turbine 

Abbreviations

BG

Bond graph

UncBG

Uncertain bond graph

MCS

Monte Carlo simulation

HAWT

Horizontal axis wind turbine

ɳ

Gearbox efficiency

Notes

Acknowledgements

Laboratory of mechanic, mechatronic and command in high Engineering School (ENSAM-Meknes) supported this work. All acknowledgements to the team members and to Z. Khaouch from Faculty of Sciences and Techniques (FST-BeniMellal) for his support.

Funding

Funding was provided by IMSM research team-ENSAM.

References

  1. 1.
    Vergé, M., & Jaume, D. (2003). Modélisation structurée des systèmes avec les bonds graphs. France: Editions TECHNIP.Google Scholar
  2. 2.
    White, G. (2003). Derivation of high efficiency two-stage epicyclic gears. Mechanism and Machine Theory,38, 149–159.CrossRefGoogle Scholar
  3. 3.
    Pennestrì, E., & Freudenstein, F. (1993). The mechanical efficiency of epicyclic gear trains. Journal of Mechanical Design,115, 645.CrossRefGoogle Scholar
  4. 4.
    Singh, A., Kahraman, A., & Ligata, H. (2008). Internal gear strains and load sharing in planetary transmissions—model and experiments. Journal of Mechanical Design,130, 72602.CrossRefGoogle Scholar
  5. 5.
    Yao, W., Chen, X., Luo, W., Van Tooren, M., & Guo, J. (2011). Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Progress in Aerospace Sciences,47, 450–479.CrossRefGoogle Scholar
  6. 6.
    Park, Y. J., Lee, G. H., Oh, J. S., Shin, C. S., & Nam, J. S. (2019). Effects of non-torque loads and carrier pinhole position errors on planet load sharing of wind turbine gearbox. International Journal of Precision Engineering and Manufacturing-Green Technology,6, 281–292.CrossRefGoogle Scholar
  7. 7.
    Liang, D., Chen, B., & Gao, Y. (2019). Hobbing manufacturing of new type of involute-helix gears for wind turbine gearbox. International Journal of Precision Engineering and Manufacturing-Green Technology,6, 305–313.CrossRefGoogle Scholar
  8. 8.
    Guerine, A. (2016). Contribution à l’étude du comportement dynamique d’un système d’engrenage en présence d’incertitudes,Thesis, INSA of Rouen, France.Google Scholar
  9. 9.
    Radzimovsky, E. (1956). A simplified approach for determining power losses and efficiency of planetary gear drives. Machine Design,28, 101–110.Google Scholar
  10. 10.
    Spera, D. A. (2015). Wind turbine technology-fundamental concepts of wind turbine engineering. Solar energy (Vol. 62). New York: ASME.Google Scholar
  11. 11.
    Kim, K., Kim, H., Paek, I., Kim, H.-G., & Son, J. (2019). Field validation of demanded power point tracking control algorithm for medium-capacity wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology.  https://doi.org/10.1007/s40684-019-00107-3.CrossRefGoogle Scholar
  12. 12.
    Kim, K., et al. (2018). Design and validation of demanded power point tracking control algorithm of wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology.,5, 387–400.CrossRefGoogle Scholar
  13. 13.
    Borutzky, W. (2010). Bond graph methodology: Development and analysis of multi-disciplinary dynamic system models. Berlin: Springer.CrossRefGoogle Scholar
  14. 14.
    Borutzky, W. (2011). Bond Graph modelling of engineering systems. Berlin: Springer.  https://doi.org/10.1007/978-1-4419-9368-7.CrossRefzbMATHGoogle Scholar
  15. 15.
    Jouilel, N., Radouani, M., & El Fahime, B. (2018). Parametric uncertainties effect on the performance of HAWT’s induction machine: Bond graph approach. In IEEE International Conference on Optimization and Applications, ICOA 2018, Mohammedia, Morocco (pp 1–6).  https://doi.org/10.1109/icoa.2018.8370514.
  16. 16.
    Paynter, H. M. (1961). Analysis and design of engineering systems. Cambridge: MIT Press.Google Scholar
  17. 17.
    Kam, C. S., & Dauphin-Tanguy, G. (2005). Bond graph models of structured parameter uncertainties. Journal of the Franklin Institute,342, 379–399.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Khaouch, Z., Zekraoui, M., Bengourram, J., & Kouider, N. (2016). Mechatronic modeling of a 750 kW fixed-speed wind energy conversion system using the Bond Graph Approach. ISA Transactions.  https://doi.org/10.1016/j.isatra.2016.07.009.CrossRefGoogle Scholar
  19. 19.
    Jawad, A., Dantan, J., Sabri, V., Beaucaire, P., & Gayton, N. (2012). A statistical tolerance analysis approach for over-constrained mechanism based on optimization and Monte Carlo simulation. Computer-Aided Design,44, 132–142.CrossRefGoogle Scholar
  20. 20.
    Sanchez, R., & Medina, A. (2014). Wind turbine model simulation: A bond graph approach. Simulation Modelling Practice and Theory,41, 28–45.CrossRefGoogle Scholar
  21. 21.
    Binder, K., Heermann, D., Roelofs, L., Mallinckrodt, A. J., & McKay, S. (1993). Monte Carlo simulation in statistical physics. Computers in Physics,7, 156–157.CrossRefGoogle Scholar
  22. 22.
    Landau, D., & Binder, K. (2005). A guide to Monte Carlo Simulations in statistical physics (pp. 304–306). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. 23.
    Naima, J., Mohammed, R., M’hammed, E., & Benaissa, E. F. (2016). Nonlinear condition tolerancing using Monte Carlo simulation. International Journal of Advanced Computer Science and Applications,7(5), 313–318.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Laboratory of Mechanic, Mechatronic and CommandENSAM, Moulay Ismail UniversityMeknesMorocco

Personalised recommendations