Advertisement

Modelling and Validation of Electret-Based Vibration Energy Harvesters in View of Charge Migration

  • Zhaoshu Yang
  • Lihua TangEmail author
  • Kai Tao
  • Kean C. Aw
Regular Paper
  • 97 Downloads

Abstract

One of the key problems of electret-based vibration energy harvester (eVEH) modelling is that the surface voltage itself cannot precisely reveal the charge storage characteristics of the electret fabricated by different processes. In this paper, we endeavor to interpret the charge migration mechanism of the eVEH with electrets fabricated by different processes. Based on the above analysis, a unified analytical model of the eVEH is derived accordingly. The dynamic response and voltage output predicted by this model are verified numerically by the equivalent circuit simulation and experimentally with an out-of-plane eVEH prototype. According to the analysis, the maximum power output is approximately 255 μW when the prototype works at its resonance frequency and the vibration amplitude is 1 mm. This paper elucidates the working principle of the eVEH and provides a framework for further theoretical study of eVEHs from the first principle.

Keywords

Electret Vibration energy harvester Charge migration Equivalent circuit model 

Notes

Acknowledgements

This research is supported by National Natural Science Foundation of China Grant No. 51705429 and Natural Science Foundation of Shaanxi Province No. 2018JQ5030.

Compliance with Ethical Standards

Conflicts of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Kim, H. S., Kim, J.-H., & Kim, J. (2011). A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 12(6), 1129–1141.CrossRefGoogle Scholar
  2. 2.
    Jung, B. C., & Yoon, H. (2019). Double acting compression mechanism (DACM) for piezoelectric vibration energy harvesting in 33-mode operation. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 681–690.CrossRefGoogle Scholar
  3. 3.
    Park, H., & Kim, J. (2016). Electromagnetic induction energy harvester for high-speed railroad applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 41–48.CrossRefGoogle Scholar
  4. 4.
    Kim, S.-C., Kim, J.-G., Kim, Y.-C., Yang, S.-J., & Lee, H. (2019). A study of electromagnetic vibration energy harvesters: Design optimization and experimental validation. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 779–788.CrossRefGoogle Scholar
  5. 5.
    Basset, P., Galayko, D., Paracha, A. M., Marty, F., Dudka, A., & Bourouina, T. (2009). A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. Journal of Micromechanics and Microengineering, 19(11), 115025.CrossRefGoogle Scholar
  6. 6.
    Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., et al. (2014). Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering, 24(3), 035001.CrossRefGoogle Scholar
  7. 7.
    Tao, K., Yi, H., Tang, L., Wu, J., Wang, P., Wang, N., et al. (2018). Piezoelectric ZnO thin films for 2DOF MEMS vibrational energy harvesting. Surface & Coatings Technology, 359, 289–295.CrossRefGoogle Scholar
  8. 8.
    Wang, F., & Hansen, O. (2014). Electrostatic energy harvesting device with out-of-the-plane gap closing scheme. Sensors and Actuators, A: Physical, 211, 131–137.CrossRefGoogle Scholar
  9. 9.
    Yang, Z., Tang, L., Tao, K., & Aw, K. (2019). A broadband electret-based vibrational energy harvester using soft magneto-sensitive elastomer with asymmetrical frequency response profile. Smart Materials and Structures, 28(10), 10LT02.CrossRefGoogle Scholar
  10. 10.
    Jefimenko, O. D., & Walker, D. K. (1978). Electrostatic current generator having a disk electret as an active element. IEEE Transactions on Industry Applications, IA-14(6), 537–540.CrossRefGoogle Scholar
  11. 11.
    Tada, Y. (1986). Theoretical characteristics of generalized electret generator, using POlymer Film Electrets. IEEE Transactions on Electrical Insulation, EI-21(3), 457–464.CrossRefGoogle Scholar
  12. 12.
    Tada, Y. (1993). Improvement of conventional electret motors. IEEE Transactions on Electrical Insulation, 28(3), 402–410.CrossRefGoogle Scholar
  13. 13.
    Boland, J., Yuan-Heng, C., Suzuki, Y., & Tai, Y. C. (2003). Micro electret power generator. In The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto, 1923 Jan, 2003. (pp. 538–541)Google Scholar
  14. 14.
    Sterken, T., Baert, K., Puers, R., Borghs, G., & Mertens, R. (2003). A new power MEMS component with variable capacitance. In Mircoelectronics Symposium and Exhibition, 2003: Surface Mount Technology Association. pp. 27–34Google Scholar
  15. 15.
    Asanuma, H., Hara, M., Oguchi, H., & Kuwano, H. (2015). Air gap optimization for output power and band width in out-of-plane vibration energy harvesters employing electrets. Journal of Micromechanics and Microengineering, 25(10), 104013.CrossRefGoogle Scholar
  16. 16.
    Tao, K., Tang, L., Wu, J., Lye, S. W., Chang, H., & Miao, J. (2018). Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity. Journal of Microelectromechanical Systems, 27(2), 276–288.CrossRefGoogle Scholar
  17. 17.
    Tvedt, L. G. W., Blystad, L.-C. J., & Halvorsen, E. (2008). Simulation of an electrostatic energy harvester at large amplitude narrow and wide band vibrations. In Design, Test, Integration and Packaging of MEMS/MOEMS, 2008. MEMS/MOEMS 2008. Symposium on, 2008 (pp. 296–301): IEEEGoogle Scholar
  18. 18.
    Westby, E. R., & Halvorsen, E. (2012). Design and modeling of a patterned-electret-based energy harvester for tire pressure monitoring systems. IEEE/ASME Transactions on Mechatronics, 17(5), 995–1005.CrossRefGoogle Scholar
  19. 19.
    Tao, K., Wu, J., Tang, L., Hu, L., Lye, S. W., & Miao, J. (2017). Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets. Journal of Micromechanics and Microengineering, 27(4), 044002.CrossRefGoogle Scholar
  20. 20.
    Boisseau, S., Despesse, G., Ricart, T., Defay, E., & Sylvestre, A. (2011). Cantilever-based electret energy harvesters. Smart Materials and Structures, 20(10), 105013.CrossRefGoogle Scholar
  21. 21.
    Gao, C., Gao, S., Liu, H., Jin, L., & Lu, J. (2017). Electret length optimization of output power for double-end fixed beam out-of-plane electret-based vibration energy harvesters. Energies, 10(8), 1122.CrossRefGoogle Scholar
  22. 22.
    Tao, K., Lye, S. W., Miao, J., Tang, L., & Hu, X. (2015). Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper. Journal of Micromechanics and Microengineering, 25(10), 104014.CrossRefGoogle Scholar
  23. 23.
    Boisseau, S., Despesse, G., & Seddik, B. A. (2012). Electrostatic conversion for vibration energy harvesting. arXiv:1210.5191.Google Scholar
  24. 24.
    Gao, C., Gao, S., Liu, H., Jin, L., Lu, J., & Li, P. (2017). Optimization for output power and band width in out-of-plane vibration energy harvesters employing electrets theoretically, numerically and experimentally. Microsystem Technologies, 23(12), 5759–5769.CrossRefGoogle Scholar
  25. 25.
    Feng, Y., Yu, Z., & Han, Y. (2018). High-performance gap-closing vibrational energy harvesting using electret-polarized dielectric oscillators. Applied Physics Letters, 112(3), 032901.CrossRefGoogle Scholar
  26. 26.
    Salam, M. A. (2014). Electric Currents. Electromagnetic Field Theories for Engineering (pp. 117–139). Singapore: Springer Singapore.Google Scholar
  27. 27.
    Rosser, W. G. V. (2013). Classical electromagnetism via relativity: An alternative approach to Maxwell’s equations. New York: Springer.Google Scholar
  28. 28.
    Bu, L., Wu, X., Wang, X., & Liu, L. (2013). Silicon based polytetrafluoroethylene electrets: Preparation and corona charging characteristics. Journal of Electrostatics, 71(4), 666–672.CrossRefGoogle Scholar
  29. 29.
    Boisseau, S., Despesse, G., & Sylvestre, A. (2010). Optimization of an electret-based energy harvester. Smart Materials and Structures, 19(7), 075015.CrossRefGoogle Scholar
  30. 30.
    Khaligh, A., Zeng, P., & Zheng, C. (2010). Kinetic energy harvesting using piezoelectric and electromagnetic technologies—State of the art. IEEE Transactions on Industrial Electronics, 57(3), 850–860.CrossRefGoogle Scholar
  31. 31.
    Naifar, S., Bradai, S., Viehweger, C., & Kanoun, O. (2017). Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation. Measurement, 106, 251–263.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department Mechanical EngineeringUniversity of AucklandAucklandNew Zealand
  2. 2.Department Microsystem EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations