Advertisement

Flexible Energy Harvester with Piezoelectric and Thermoelectric Hybrid Mechanisms for Sustainable Harvesting

  • Yongkeun Oh
  • Dae-Sung Kwon
  • Youngkee Eun
  • Wondo Kim
  • Min-Ook Kim
  • Hee-Jin Ko
  • Seong Gu Kang
  • Jongbaeg KimEmail author
Regular Paper
  • 171 Downloads

Abstract

In this paper, we present a flexible hybrid energy harvester for single- or multi-source energy collection. To increase harvesting power, piezoelectric and thermoelectric conversions are used simultaneously. The piezoelectric portion of the harvester collects energy from low-frequency kinetic motion using frequency up-conversion. The thermoelectric part is suitable for harvesting energy from a curved surface, thanks to its flexibility. By harvesting from two different energy sources (kinetic and thermal), the harvester allows for sustainable energy harvesting. The average power density obtained was 28.57 and 0.64 μW/cm2 by piezoelectric and thermoelectric conversion, respectively.

Keywords

Energy harvester Flexible harvester Hybrid Piezoelectric Thermoelectric 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. NRF-2018R1A2A1A05023070, 2018R1A4A1025986).

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

40684_2019_132_MOESM1_ESM.docx (501 kb)
Supplementary material 1 (DOCX 500 kb)

References

  1. 1.
    Wang, X., Niu, S., Yi, F., Yin, Y., Hao, C., Dai, K., et al. (2017). Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano, 11, 1728–1735.CrossRefGoogle Scholar
  2. 2.
    Zhou, S., Cao, J., Wang, W., Liu, S., & Lin, J. (2015). Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration. Smart Materials and Structures, 24, 055008. (13 pp).CrossRefGoogle Scholar
  3. 3.
    Wang, W., Cao, J., Bowen, C. R., Zhou, S., & Lin, J. (2017). Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions. Energy, 118, 221–230.CrossRefGoogle Scholar
  4. 4.
    Kim, J. E., Kim, H., Yoon, H., Kim, Y. Y., & Youn, B. D. (2015). An energy conversion model for cantilevered piezoelectric vibration energy harvesters using only measurable parameters. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(1), 51–57.CrossRefGoogle Scholar
  5. 5.
    Sun, X., Wang, F., & Xu, J. (2019). Nonlinear piezoelectric structure for ultralow-frequency band vibration energy harvesting with magnetic interaction. International Journal of Precision Engineering and Manufacturing-Green Technology, 1–9.Google Scholar
  6. 6.
    Veri, C., Francioso, L., Pasca, M., Pascali, C. D., Siciliano, P., & D’Amico, S. (2016). An 80 mV startup voltage fully electrical DC–DC converter for flexible thermoelectric generators. IEEE Sensors Journal, 16(8), 2735–2745.CrossRefGoogle Scholar
  7. 7.
    Zhang, B., Sun, J., Katz, H. E., Fang, F., & Opilaia, R. L. (2010). Promising thermoelectric properties of commercial PEDOT:PSS materails and their Bi2Te3 powder composites. ACS Applied Materials & Interfaces, 2(11), 3170–3178.CrossRefGoogle Scholar
  8. 8.
    Kirihara, K., Wei, Q., Mukaida, M., & Ishida, T. (2017). Thermoelectric power generation using nonwoven fabric module impregnated with conducting polymer PEDOT:PSS. Synthetic Metals, 225, 41–48.CrossRefGoogle Scholar
  9. 9.
    Atalay, T., Köysal, Y., Özdemir, A. E., & Özbaş, E. (2018). Evaluation of energy efficiency of thermoelectric generator with two-phase thermo-syphon heat pipes and nano-particle fluids. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 5–12.CrossRefGoogle Scholar
  10. 10.
    Wang, F., & Hansen, O. (2014). Electrostatic energy harvesting device with out-of-the-plane gap closing scheme. Sensors and Actuators A, 211, 131–137.CrossRefGoogle Scholar
  11. 11.
    Fan, F.-R., Tian, Z.-Q., & Wang, Z. L. (2012). Flexible triboelectric generator. Nano Energy, 1, 328–334.CrossRefGoogle Scholar
  12. 12.
    Eun, Y., Kwon, D.-S., Kim, M.-O., Yoo, I., Sim, J., Ko, H.-J., et al. (2014). A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion. Smart Materials and Structures, 23, 045040. (6 pp).CrossRefGoogle Scholar
  13. 13.
    Hamid, R., & Yuce, M. R. (2017). A wearable energy harvester unit using piezoelectric-electromagnetic hybrid technique. Sensor and Actuators A, 257, 198–207.CrossRefGoogle Scholar
  14. 14.
    Ko, Y. J., Kim, D. Y., Won, S. S., Ahn, C. W., Kim, I. W., Kingon, A. I., et al. (2016). Flexible Pb(Zr0.52Ti0.48)O3 films for a hybrid piezoelectric-pyroelectric nanogenerator under harsh environments. ACS Applied Materials & Interfaces, 8, 6504–6511.CrossRefGoogle Scholar
  15. 15.
    Collado, A., & Georgiadis, A. (2013). Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(8), 2225–2234.CrossRefGoogle Scholar
  16. 16.
    Yang, Y., Zhang, H., Zhu, G., Lee, S., Lin, Z.-H., & Wang, Z. L. (2012). Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano, 7(1), 785–790.CrossRefGoogle Scholar
  17. 17.
    Lee, S., Bae, S.-H., Lin, L., Ahn, S., Park, C., Kim, S.-W., et al. (2013). Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies. Nano Energy, 2, 817–825.CrossRefGoogle Scholar
  18. 18.
    Montgomery, D. S., Hewitt, C. A., & Carroll, D. L. (2016). Hybrid thermoelectric piezoelectric generator. Applied Physics Letters, 108, 263901.CrossRefGoogle Scholar
  19. 19.
    Park, J. H., Lim, T. W., Kim, S. D., & Park, S. H. (2016). Design and experimental verification of flexible plate-type piezoelectric vibrator for energy harvesting system. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(3), 253–259.CrossRefGoogle Scholar
  20. 20.
    Kwon, D.-S., Ko, H.-J., Kim, M.-O., Oh, Y., Sim, J., Lee, K., et al. (2014). Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation. Applied Physics Letters, 104, 113904.CrossRefGoogle Scholar
  21. 21.
    Madan, D., Chen, A., Wright, P. K., & Evans, J. W. (2012). Printed se-doped MA n-Type Bi2Te3 thick-film thermoelectric generators. Journal of Electronic Materials, 41, 1481–1486.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringYonsei UniversitySeoulRepublic of Korea
  2. 2.Korea Institute of Industrial Technology (KITECH)AnsanRepublic of Korea
  3. 3.Institute of Science and Technology at Korea University at SejongSejongRepublic of Korea

Personalised recommendations