Advertisement

Functionalized Carbon Black Supported Silver (Ag/C) Catalysts in Cathode Electrode for Alkaline Anion Exchange Membrane Fuel Cells

  • Van Men Truong
  • Ming-Kun Yang
  • Hsiharng YangEmail author
Regular Paper
  • 5 Downloads

Abstract

Two kinds of non-platinum metal catalysts, 40 wt% Ag/C (Ag/C) prepared using the impregnation method and commercial nano-silver powder (commercial Ag) were used as the cathode catalysts in alkaline anion exchange membrane fuel cells (AEMFC). In the surface measurement and elemental composition analysis of the prepared Ag/C catalyst, XRD revealed that the silver nanoparticles were successfully produced and attached onto the carbon black supporter. In addition, SEM and TEM analyses showed the silver nanoparticle size catalyst was less than 20 nm in the synthesized Ag/C. EDX and TGA analyses confirmed that the actual Ag loading in the Ag/C catalyst was near the calculated value in the synthesis procedure. For AEMFC performance tests, the results showed that the maximum power densities using Ag/C, commercial Ag, and Pt/C as the cathode catalysts were 200 mW cm−2 at 0.4 V, 105 mW cm−2 at 0.3 V, and 207 mW cm−2 at 0.5 V which were consistent with the CVs and LSV characterizations. These results indicated that the performance of tested AEMFC with Ag/C and commercial Ag catalysts was 3.5% and 49.3% less than that of AEMFC with Pt/C, respectively. This study successfully implemented non-Pt catalyst for the cathode electrode in AEMFC applications.

Keywords

Alkaline anion exchange membrane fuel cell Carbon black Nano-silver Non-platinum catalysts Oxygen surface groups 

Notes

Acknowledgements

This work is funded by the Ministry of Science and Technology of Taiwan under a Grant MOST-105-2923-E-005-001-MY3 and also supported in part by the Ministry of Education, Taiwan, R.O.C. under the Higher Education Sprout Project.

References

  1. 1.
    Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414, 345–352.Google Scholar
  2. 2.
    Hickner, M. A. (2010). Ion-containing polymers: New energy and clean water. Materials Today, 13(5), 34–41.Google Scholar
  3. 3.
    Cheema, T. A., Kim, G. M., Lee, C. Y., Kwak, M. K., Kim, H. B., & Park, C. W. (2014). Effects of composite porous gas-diffusion layers on performance of proton exchange membrane fuel cell. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 305–312.Google Scholar
  4. 4.
    Shin, D.-H., Yoo, S.-R. & Lee, Y.-H. (2019). Real time water contents measurement based on step response for PEM fuel cell. International Journal of Precision Engineering and Manufacturing-Green Technology.Google Scholar
  5. 5.
    Sik Kang, Y., Jo, S., Choi, D., Young Kim, J., Park, T. & Yoo, S. (2019). Pt-sputtered Ti mesh electrode for polymer electrolyte membrane fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(2), 271–279.Google Scholar
  6. 6.
    Ho Seo, Y., Kim, J., Woong Ki, J., & Kim, B. (2014). Development of active breathing micro PEM fuel cell. International Journal of Precision Engineering and Manufacturing-Green Technology, 1, 101–106.Google Scholar
  7. 7.
    Lee, C.-W., Lee, M., Kang, M.-G., et al. (2018). Fabrication and operation characteristics of electrolyte impregnated matrix and cathode for molten carbonate fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 279–286.Google Scholar
  8. 8.
    Hamad, T. A., Agll, A. A., Hamad, Y. M., et al. (2013). Study of a molten carbonate fuel cell combined heat, hydrogen and power system: end-use application. Case Studies in Thermal Engineering, 1(1), 45–50.Google Scholar
  9. 9.
    Son, J.-W., & Song, H.-S. (2014). Influence of current collector and cathode area discrepancy on performance evaluation of solid oxide fuel cell with thin-film-processed cathode. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 313–316.Google Scholar
  10. 10.
    Ji, S., Ha, J., Park, T., et al. (2016). Substrate-dependent growth of nanothin film solid oxide fuel cells toward cost-effective nanostructuring. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 35–39.Google Scholar
  11. 11.
    Choi, M., Lee, J. & Lee, W. (2019). Fluid mechanical approaches for rational design of infiltrated electrodes of solid oxide fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 53–61.Google Scholar
  12. 12.
    Neergat, M., & Shukla, A. K. (2001). A high-performance phosphoric acid fuel cell. Journal of Power Sources, 102(1), 317–321.Google Scholar
  13. 13.
    McLean, G. F., Niet, T., Prince-Richard, S., & Djilali, N. (2002). An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy, 27(5), 507–526.Google Scholar
  14. 14.
    Ge, X., Sumboja, A., Wuu, D., et al. (2015). Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal, 5(8), 4643–4667.Google Scholar
  15. 15.
    Yang, W., Fellinger, T. P., & Antonietti, M. (2011). Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. Journal of the American Chemical Society, 133(2), 206–209.Google Scholar
  16. 16.
    Hermann, A., Chaudhuri, T., & Spagnol, P. (2005). Bipolar plates for PEM fuel cells: a review. International Journal of Hydrogen Energy, 30(12), 1297–1302.Google Scholar
  17. 17.
    Sammes, N. (2006). Fuel cell technology: reaching towards commercialization. London: Springer.Google Scholar
  18. 18.
    Sljukic, P. B., Banks, C. G., & Compton, R. (2005). An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes. Journal of the Iranian Chemical Society, 2, 1–25.Google Scholar
  19. 19.
    Xu, J., Gao, P., & Zhao, T. S. (2012). Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy & Environmental Science, 5(1), 5333–5339.Google Scholar
  20. 20.
    Qaseem, A., Chen, F., Wu, X., & Johnston, R. L. (2016). Pt-free silver nanoalloy electrocatalysts for oxygen reduction reaction in alkaline media. Catalysis Science & Technology, 6(10), 3317–3340.Google Scholar
  21. 21.
    Coutanceau, C., Demarconnay, L., Lamy, C., & Léger, J. M. (2006). Development of electrocatalysts for solid alkaline fuel cell (SAFC). Journal of Power Sources, 156(1), 14–19.Google Scholar
  22. 22.
    Spendelow, J. S., & Wieckowski, A. (2007). Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Physical Chemistry Chemical Physics: PCCP, 9(21), 2654–2675.Google Scholar
  23. 23.
    Barsuk, D., Zadick, A., Chatenet, M., et al. (2016). Nanoporous silver for electrocatalysis application in alkaline fuel cells. Materials and Design, 111, 528–536.Google Scholar
  24. 24.
    Bidault, F., & Kucernak, A. (2010). A novel cathode for alkaline fuel cells based on a porous silver membrane. Journal of Power Sources, 195(9), 2549–2556.Google Scholar
  25. 25.
    Chatenet, M., Genies-Bultel, L., Aurousseau, M., Durand, R., & Andolfatto, F. (2002). Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide—comparison with platinum. Journal of Applied Electrochemistry, 32, 1131–1140.Google Scholar
  26. 26.
    Wang, Y., Liu, Y., Lu, X., et al. (2012). Silver-molybdate electrocatalysts for oxygen reduction reaction in alkaline media. Electrochemistry Communications, 20, 171–174.Google Scholar
  27. 27.
    Meng, H., & Shen, P. K. (2006). Novel Pt-free catalyst for oxygen electroreduction. Electrochemistry Communications, 8(4), 588–594.Google Scholar
  28. 28.
    Blizanac, B. B., Ross, P. N., & Marković, N. M. (2006). Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring DiskAg(hkl) studies. The Journal of Physical Chemistry B, 110(10), 4735–4741.Google Scholar
  29. 29.
    Han, J.-J., Li, N., & Zhang, T.-Y. (2009). Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. Journal of Power Sources, 193(2), 885–889.Google Scholar
  30. 30.
    Xin, L., Zhang, Z., Wang, Z., Qi, J. and Li, W. (2013). Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell. Frontiers in Chemistry, 1(16), 1–5.Google Scholar
  31. 31.
    Garcia, A. H. S., Gasparotto, L. F., Gomes, J., & Tremiliosi-Filho, G. (2012). Straightforward synthesis of carbon-supported Ag nanoparticles and their application for the oxygen reduction reaction. Electrocatalysis, 3, 147–152.Google Scholar
  32. 32.
    Vinodh, R., & Sangeetha, D. (2012). Carbon supported silver (Ag/C) electrocatalysts for alkaline membrane fuel cells. Journal of Materials Science, 47, 852–859.Google Scholar
  33. 33.
    Maheswari, S., Sridhar, P., & Pitchumani, S. (2012). Carbon-supported silver as cathode electrocatalyst for alkaline polymer electrolyte membrane fuel cells. Electrocatal, 3, 13–21.Google Scholar
  34. 34.
    Wang, Z., Xin, L., Zhao, X., et al. (2014). Carbon supported Ag nanoparticles with different particle size as cathode catalysts for anion exchange membrane direct glycerol fuel cells. Renewable Energy, 62, 556–562.Google Scholar
  35. 35.
    Arukula, R., Vinothkannan, M., Kim, A. R., & Yoo, D. J. (2019). Cumulative effect of bimetallic alloy, conductive polymer and graphene toward electrooxidation of methanol: An efficient anode catalyst for direct methanol fuel cells. Journal of Alloys and Compounds, 771, 477–488.Google Scholar
  36. 36.
    Ramakrishnan, S., Karuppannan, M., Mohanraj, V., Ramachandran, K., Kwon, O. J., & Yoo, D. J. (2019). Ultrafine Pt nanoparticles stabilized by MoS2/N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions. ACS Applied Materials & Interfaces, 11, 12504–12515.Google Scholar
  37. 37.
    Bala, T., Prasad, B. L. V., Sastry, M., Kahaly, M. U., & Waghmare, U. V. (2007). Interaction of different metal ions with carboxylic acid group: A quantitative study. The Journal of Physical Chemistry A, 111(28), 6183–6190.Google Scholar
  38. 38.
    Rivas, B. L., Pereira, E. D., & Moreno-Villoslada, I. (2003). Water-soluble polymer–metal ion interactions. Progress in Polymer Science, 28(2), 173–208.Google Scholar
  39. 39.
    Yang, Y., Chiang, K., & Burke, N. (2011). Porous carbon-supported catalysts for energy and environmental applications: A short review. Catalysis Today, 178(1), 197–205.Google Scholar
  40. 40.
    Chen, J. P., & Wu, S. (2004). Acid/base-treated activated carbons: Characterization of functional groups and metal adsorptive properties. Langmuir, 20(6), 2233–2242.Google Scholar
  41. 41.
    Bhatnagar, A., Hogland, W., Marques, M., & Sillanpää, M. (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219, 499–511.Google Scholar
  42. 42.
    Boudou, J. P., Paredes, J. I., Cuesta, A., Martı́nez-Alonso, A., & Tascón, J. M. D. (2003). Oxygen plasma modification of pitch-based isotropic carbon fibres. Carbon, 41(1), 41–56.Google Scholar
  43. 43.
    Xie, F., Phillips, J., Silva, I. F., Palma, M. C., & Menéndez, J. A. (2000). Microcalorimetric study of acid sites on ammonia- and acid-pretreated activated carbon. Carbon, 38(5), 691–700.Google Scholar
  44. 44.
    Hu, C.-C., & Wang, C.-C. (2004). Effects of electrolytes and electrochemical pretreatments on the capacitive characteristics of activated carbon fabrics for supercapacitors. Journal of Power Sources, 125(2), 299–308.Google Scholar
  45. 45.
    Sosa, R. C., Parton, R. F., Neys, P. E., Lardinois, O., Jacobs, P. A., & Rouxhet, P. G. (1996). Surface modification of carbon black by oxidation and its influence on the activity of immobilized catalase and iron-phthalocyanines. Journal of Molecular Catalysis A: Chemical, 110(2), 141–151.Google Scholar
  46. 46.
    Zhou, D.-M., Wang, Y.-J., Wang, H.-W., Wang, S.-Q., & Cheng, J.-M. (2010). Surface-modified nanoscale carbon black used as sorbents for Cu(II) and Cd(II). Journal of Hazardous Materials, 174(1), 34–39.Google Scholar
  47. 47.
    Carmo, M., Linardi, M., & Poco, J. G. R. (2009). Characterization of nitric acid functionalized carbon black and its evaluation as electrocatalyst support for direct methanol fuel cell applications. Applied Catalysis, A: General, 355(1), 132–138.Google Scholar
  48. 48.
    Aksoylu, A. E., Madalena, M., Freitas, A., Pereira, M. F. R., & Figueiredo, J. L. (2001). The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon, 39(2), 175–185.Google Scholar
  49. 49.
    Xiong, H., Nolan, M., Shanks, B. H., & Datye, A. K. (2014). Comparison of impregnation and deposition precipitation for the synthesis of hydrothermally stable niobia/carbon. Applied Catalysis, A: General, 471, 165–174.Google Scholar
  50. 50.
    Quintanilla, A., Casas, J. A., & Rodríguez, J. J. (2007). Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts. Applied Catalysis, B: Environmental, 76(1), 135–145.Google Scholar
  51. 51.
    Prado-Burguete, C., Linares-Solano, A., Rodríguez-Reinoso, F., & de Lecea, C. S.-M. (1989). The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts. Journal of Catalysis, 115(1), 98–106.Google Scholar
  52. 52.
    Ahmed, D. S., Haider, A. J., & Mohammad, M. R. (2013). Comparesion of functionalization of multi-walled carbon nanotubes treated by oil olive and nitric acid and their characterization. Energy Procedia, 36, 1111–1118.Google Scholar
  53. 53.
    Le, V. T., Ngo, C. L., Le, Q. T., Ngo, T. T., Nguyen, D. N., & Vu, M. T. (2013). Surface modification and functionalization of carbon nanotube with some organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3), 035017.Google Scholar
  54. 54.
    Mohan, A. N. (2012). Synthesis and characterization of carbon nanospheres from hydrocarbon soot. International Journal of Electrochemical Science, 7, 9537–9549.Google Scholar
  55. 55.
    Rios, R. R. A., Alves, D. E., Dalmázio, I., Bento, S. F. V., Donnici, C. L., & Lago, R. M. (2003). Tailoring activated carbon by surface chemical modification with O, S, and N containing molecules. Materials Research, 6, 129–135.Google Scholar
  56. 56.
    Singh, P., Kim, Y. J., Singh, H., et al. (2015). Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. International Journal of Nanomedicine, 10, 2567–2577.Google Scholar
  57. 57.
    Wang, W., Wang, Z., Wang, J., Zhong, C.-J., & Liu, C.-J. (2017). Highly active and stable Pt-Pd alloy catalysts synthesized by room-temperature electron reduction for oxygen reduction reaction. Advanced Science, 4(4), 1600486.Google Scholar
  58. 58.
    Alimohammadi, F., Gashti, M. P., Shamei, A., & Kiumarsi, A. (2012). Deposition of silver nanoparticles on carbon nanotube by chemical reduction method: Evaluation of surface, thermal and optical properties. Superlattices and Microstructures, 52(1), 50–62.Google Scholar
  59. 59.
    Maheswari, S., Parthasarathi, S., & Pitchumani, S. (2012). Carbon-supported silver as cathode electrocatalyst for alkaline polymer electrolyte membrane fuel cells. Electrocatalysis, 3, 13–21.Google Scholar
  60. 60.
    Guo, J., Hsu, A., Chu, D., & Chen, R. (2010). Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. Journal of Physical Chemistry C, 114(10), 4324–4330.Google Scholar
  61. 61.
    Jović, B., & Jovic, V. (2004). Electrochemical formation and characterization of Ag2O. Journal of the Serbian Chemical Society, 69(2), 153–166.Google Scholar
  62. 62.
    Mahapatra, S. S., & Datta, J. (2011). Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium. International Journal of Electrochemistry, 1–16, 2011.Google Scholar
  63. 63.
    Wiberg, G. K. H., Mayrhofer, K. J. J., & Arenz, M. (2010). Investigation of the oxygen reduction activity on silver—a rotating disc electrode study. Fuel Cells, 10(4), 575–581.Google Scholar
  64. 64.
    Genies, L., Bultel, Y., Faure, R., & Durand, R. (2003). Impedance study of the oxygen reduction reaction on platinum nanoparticles in alkaline media. Electrochimica Acta, 48(25), 3879–3890.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Graduate Institute of Precision EngineeringNational Chung Hsing UniversityTaichung CityTaiwan
  2. 2.Innovation and Development Center of Sustainable Agriculture (IDCSA)National Chung Hsing UniversityTaichung CityTaiwan

Personalised recommendations