Material Removal Mechanisms of Cu–Co Metal-Powder Composite by Microorganisms

  • Fei Ma
  • Hui HuangEmail author
  • Xipeng Xu
Regular Paper


Material characteristics of pure copper, pure cobalt and Cu–Co metal-powder composite were comparative studied through biomachining by Acidithiobacillus ferrooxidans (A. ferrooxidans) in three groups of culture solutions. Material removal mechanisms of Cu–Co metal-powder composite involved in biomachining were explored. It was first observed that the pure cobalt and Cu–Co metal-powder composite were machined by the A. ferrooxidans. The material removal of three workpieces presented linear increase along the machining process due to the metabolic activity of the A. ferrooxidans. Different with the pure metal, the material removal mechanism of Cu–Co metal-powder is explained by the dual effect of micro-galvanic corrosion and participation of Cu2+ and Fe3+ for oxidization of cobalt.


Biomachining Powder sintering Acidithiobacillus ferrooxidans Reduction potential Micro-galvanic corrosion 


A. ferrooxidans

Acidithiobacillus ferrooxidans


Standard reduction potential of demi-reaction



The authors would like to acknowledge the East China University of Technology for supplying the culture of A. ferrooxidans.


The authors would like to thank the financial supports from the National Natural Science Foundation of China (Grant Nos. 51235004 and 51375179) and Science and Technology Projects of Fujian Province (2017H6014).


  1. 1.
    Diaz-Tena, E., Barona, A., Gallastegui, G., Rodriguez, A., Lopez, D. L. L., & Elias, A. (2017). Biomachining: Metal etching via microorganisms. Critical Reviews in Biotechnology, 37, 323–332.CrossRefGoogle Scholar
  2. 2.
    Muhammad, I., Sana Ullah, S. M., Han, D. S., & Ko, T. J. (2015). Selection of optimum process parameters of biomachining for maximum metal removal rate. International Journal of Precision Engineering and Manufacturing-Green Technology, 2, 307–313.CrossRefGoogle Scholar
  3. 3.
    Muhammad, I., Khatoon, T., Ullah, S. M. S., & Ko, T. J. (2018). Development of empirical model for biomachining to improve machinability and surface roughness of polycrystalline copper. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 201–209.CrossRefGoogle Scholar
  4. 4.
    Díaz-Tena, E., Gallastegui, G., Hipperdinger, M., Donati, E. R., & Ramírez, M. (2016). New advances in copper biomachining by iron-oxidizing bacteria. Corrosion Science, 112, 385–392.CrossRefGoogle Scholar
  5. 5.
    Díaz-Tena, E., Rojo, N., Gurtubay, L., Rodríguez-Ezquerro, A., López De Lacalle, L. N., Oyanguren, I., et al. (2017). Biomachining: Preservation of Acidithiobacillus Ferrooxidans and treatment of the liquid residue. Engineering in Life Sciences, 17, 382–391.CrossRefGoogle Scholar
  6. 6.
    Uno, Y., Kaneeda, T., & Yokomizo, S. (1996). Fundamental study on biomachining (Machining of Metals by Thiobacillus Ferrooxidans). JSME International Journal Ser C, 39, 837–842.Google Scholar
  7. 7.
    Zhang, D. Y., & Li, Y. Q. (1998). Possibility of biological micromachining used for metal removal. Science in China, Series C: Life Sciences, 41, 151–156.CrossRefGoogle Scholar
  8. 8.
    Lilova, K., Karamanev, D., Flemming, R. L., & Karamaneva, T. (2007). Biological oxidation of metallic copper by Acidithiobacillus Ferrooxidans. Biotechnology and Bioengineering, 97, 308–316.CrossRefGoogle Scholar
  9. 9.
    Liu, Y. D., Wang, X. B., Yang, Y., & Shi, W. T. (2009). Processing micro-gear based on bio-etching method. Applied Mechanics and Materials, 16–19, 120–123.CrossRefGoogle Scholar
  10. 10.
    Istiyanto, J., Saragih, A., & Ko, T. J. (2012). Metal based micro-feature fabrication using biomachining process. Microelectronic Engineering, 98, 561–565.CrossRefGoogle Scholar
  11. 11.
    Díaz-Tena, E., Rodríguez-Ezquerro, A., De Lacalle, López, Marcaide, L. N., Gurtubay Bustinduy, L., & Elías Sáenz, A. (2014). A sustainable process for material removal on pure copper by use of extremophile bacteria. Journal of Cleaner Production, 84, 752–760.CrossRefGoogle Scholar
  12. 12.
    Jadhav, U. U., Hocheng, H., & Weng, W. (2013). Innovative use of biologically produced ferric sulfate for machining of copper metal and study of specific metal removal rate and surface roughness during the process. Journal of Materials Processing Technology, 213, 1509–1515.CrossRefGoogle Scholar
  13. 13.
    Hocheng, H., Chang, J. H., Hsu, H. S., Han, H. J., Chang, Y. L., & Jadhav, U. U. (2012). Metal removal by acidithiobacillus ferrooxidans through cells and extra-cellular culture supernatant in biomachining. CIRP Journal of Manufacturing Science and Technology, 5, 137–141.CrossRefGoogle Scholar
  14. 14.
    Hocheng, H., Chang, J., & Jadhav, U. U. (2012). Micromachining of Various Metals by Using Acidithiobacillus Ferrooxidans 13820 Culture Supernatant Experiments. Journal of Cleaner Production, 20, 180–185.CrossRefGoogle Scholar
  15. 15.
    Hocheng, H., Jadhav, U. U., & Chang, J. H. (2012). Biomachining rates of various metals by Acidithiobacillus Thiooxidans. International Journal of Surface Science and Engineering, 6, 101–111.CrossRefGoogle Scholar
  16. 16.
    Chang, J. H., Hocheng, H., Chang, H. Y., & Shih, A. (2008). Metal removal rate of Thiobacillus Thiooxidans without pre-secreted metabolite. Journal of Materials Processing Technology, 201, 560–564.CrossRefGoogle Scholar
  17. 17.
    Silverman, M. P., & Lundgren, D. G. (1959). Studies on the chemoautotrophic iron bacterium FERROBACILLUS FERROOXIDANS I.: An improved medium and a harvesting procedure for securing high cell yields. Journal of Bacteriology, 77, 642–647.Google Scholar
  18. 18.
    Yun, H. G., Kim, M., Kang, M. G., & Lee, I. H. (2012). Cost-effective dye-sensitized solar cells consisting of two metal foils instead of transparent conductive oxide glass. Physical Chemistry Chemical Physics, 14, 6448–6451.CrossRefGoogle Scholar
  19. 19.
    Vidal-Iglesias, F. J., Solla-Gullón, J., Rodes, A., Herrero, E., & Aldaz, A. (2012). Understanding the nernst equation and other electrochemical concepts: An easy experimental approach for students. Journal of Chemical Education, 89, 936–939.CrossRefGoogle Scholar
  20. 20.
    May, N., Ralph, D. E., & Hansford, G. S. (1997). Dynamic redox potential measurement for determining the ferric leach kinetics of pyrite. Minerals Engineering, 10, 1279–1290.CrossRefGoogle Scholar
  21. 21.
    Della Rovere, C. A., Alano, J. H., Silva, R., Nascente, P. A. P., & Otubo, J. (2012). Kuri SE characterization of passive films on shape memory stainless steels. Corrosion Science, 57, 154–161.CrossRefGoogle Scholar
  22. 22.
    Lambert, F., Gaydardzhiev, S., Léonard, G., Lewis, G., Bareel, P., & Bastin, D. (2015). Copper leaching from waste electric cables by biohydrometallurgy. Minerals Engineering, 76, 38–46.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Institute of Manufacturing EngineeringHuaqiao UniversityXiamenPeople’s Republic of China

Personalised recommendations