Surface Drying for Brittle Material Coating Without Crack Defects in Large-Area Roll-To-Roll Coating System

  • Jongsu Lee
  • Seongyong Kim
  • Changwoo LeeEmail author
Regular Paper


In this study, we determined the root cause of cracks in a large-area yttria-stabilized zirconia (YSZ) coating using the roll-to-roll (R2R) slot-die coating process followed by experimental verifications. To coat brittle material without cracks, we proposed a surface drying method that maintains sufficient ductility of the dried layer to help endure bending stresses in the web transporting and winding sections. The experimental results demonstrate that the YSZ layer after surface drying has ductile characteristics and is not transferred to the roll surface in contact with the dried layer during web transport. The YSZ layer fabricated using the slot-die coating and surface drying exhibits superior roughness (6.43% of thickness of the layer) and no cracks, verifying the effectiveness of the proposed alternative. This study demonstrates that brittle materials can be fabricated using the large-area R2R coating system along with surface drying, and suggests the feasibility of the high-throughput fabrication of solid oxide fuel cells with brittle electrolyte layers.


Roll-to-roll Slot-die coating Electrolyte Yttria-stabilized zirconia Bending stress Crack Drying 



Maximum bending strain


Maximum bending stress


Elastic modulus of yttria-stabilized zirconia layer


Elastic modulus of polyethylene terephthalate film


Cross-sectional area of polyethylene terephthalate film


Initial tension


Net stress in yttria-stabilized zirconia layer



This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Knowledge Economy (No. 20173010032140).


  1. 1.
    Masayuki, D. (2002). SOFC system and technology. Solid State Ionics, 152, 383–392.Google Scholar
  2. 2.
    Stefano, C., & Gazzani, M. (2015). High efficiency SOFC power cycles with indirect natural gas reforming and CO2 capture. Journal of Fuel Cell Science and Technology, 12(2), 021008.CrossRefGoogle Scholar
  3. 3.
    Stambouli, A. B., & Traversa, E. (2002). Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 6(5), 433–455.CrossRefGoogle Scholar
  4. 4.
    Mohebbi, H., Ebadzadeh, T., & Hesari, F. A. (2008). Synthesis of nano-crystalline (Ni/NiO)–YSZ by microwave-assisted combustion synthesis method: the influence of pH of precursor solution. Journal of Power Sources, 178(1), 64–68.CrossRefGoogle Scholar
  5. 5.
    Chauoon, S., Meepho, M., Chuankrerkkul, N., Chaian-ansutcharit, S., & Pornprasertsuk, R. (2018). Fabrication of yttria stabilized zirconia thin films on powder-injected anode substrates by electrophoretic deposition technique for solid oxide fuel cell application. Thin Solid Films, 660(30), 741–748.CrossRefGoogle Scholar
  6. 6.
    Lee, D. S., Kim, W. S., Choi, S. H., Kim, J., Lee, H. W., & Lee, J. H. (2005). Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs. Solid State Ionics, 176(1–2), 33–39.CrossRefGoogle Scholar
  7. 7.
    Choi, H., Cho, G. Y., & Cha, S. W. (2014). Fabrication and characterization of anode supported YSZ/GDC bilayer electrolyte SOFC using dry press process. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(2), 95–99.CrossRefGoogle Scholar
  8. 8.
    Singh, K. L., Sharma, P. I., Singh, A. P., & Sharma, C. (2018). Comparative study of structural and ionic properties of doped zirconia electrolytes for solid oxide fuel cells. Research and Reviews: Journal of Physics, 7(2), 1–7.Google Scholar
  9. 9.
    Yu, W., Lee, Y., Lee, Y. H., Cho, G. Y., Park, T., Tanveer, W. H., et al. (2016). Performance enhancement of thin film LSCF cathodes by gold current collecting layer. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(2), 185–188.CrossRefGoogle Scholar
  10. 10.
    Doppler, M. C., Fleig, J., Bram, M., & Opitz, A. K. (2018). Hydrogen oxidation mechanisms on Ni/yttria stabilized zirconia anodes: Separation of reaction pathways by geometry variation of pattern electrodes. Journal of Power Sources, 380, 46–54.CrossRefGoogle Scholar
  11. 11.
    Son, J. W., & Song, H. S. (2014). Influence of current collector and cathode area discrepancy on performance evaluation of solid oxide fuel cell with thin-film-processed cathode. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 313–316.CrossRefGoogle Scholar
  12. 12.
    Jiang, J., Shen, T., Deng, Z., Fu, X., Li, J., & Li, X. (2018). High efficiency thermoelectric cooperative control of a stand-alone solid oxide fuel cell system with an air bypass valve. Energy, 152, 13–26.CrossRefGoogle Scholar
  13. 13.
    Wonsyld, K., Bech, L., Nielsen, J. U., & Pedersen, C. F. (2015). Operational robustness studies of solid oxide electrolysis stacks. Journal of Energy and Power Engineering, 9, 128–140.Google Scholar
  14. 14.
    Choi, W. Y., Lee, J. W., Kim, M. J., Park, C. J., Jeong, Y. H., Choi, H.-Y., et al. (2017). Durability tests of Rh/Al-Ce-Zr catalysts coated on NiCrAl metal foam for ATR of dodecane at high temperature. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 183–189.CrossRefGoogle Scholar
  15. 15.
    Accardo, G., Frattini, D., Ham, H. C., & Yoon, S. P. (2019). Direct addition of lithium and cobalt precursors to Ce0.8Gd0.2O1.95 electrolytes to improve microstructural and electrochemical properties in IT-SOFC at lower sintering temperature. Ceramic International, 45(7B), 9348–9358.CrossRefGoogle Scholar
  16. 16.
    Lee, Y. H., Chang, I., Cho, G. Y., Park, J., Yu, W., Tanveer, W. H., et al. (2018). Thin film solid oxide fuel cells operating below 600° C: A Review. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 441–453.CrossRefGoogle Scholar
  17. 17.
    Finn, M., III, Martens, C. J., Zaretski, A. V., Roth, B., Søndergaard, R. R., Krebs, F. C., et al. (2018). Mechanical stability of roll-to-roll printed solar cells under cyclic bending and torsion. Solar Energy Materials and Solar Cells, 174, 7–15.CrossRefGoogle Scholar
  18. 18.
    Lee, J., Park, S., Park, J., Cho, Y. S., Shin, K. H., & Lee, D. (2015). Analysis of adhesion strength of laminated copper layers in roll-to-roll lamination process. International Journal of Precision Engineering and Manufacturing, 16(9), 2013–2020.CrossRefGoogle Scholar
  19. 19.
    Nguyen, H. A. D., Shin, K., & Lee, C. (2017). Multi-response optimization of R2R gravure printing using orthogonal array and principal component analysis as a weighting factor. The International Journal of Advanced Manufacturing Technology, 90(9-12), 3595–3606.CrossRefGoogle Scholar
  20. 20.
    Park, J., Kim, S., & Lee, C. (2018). An analysis of pinned edge layer of slot-die coated film in roll-to-roll green manufacturing system. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 247–254.CrossRefGoogle Scholar
  21. 21.
    Seong, J., Park, J., Lee, J., Ahn, B., Yeom, J. H., Kim, J., et al. (2016). Practical design guidelines for the development of high-precision roll-to-roll slot-die coating equipment and the process. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(11), 1677–1686.CrossRefGoogle Scholar
  22. 22.
    Steenberg, T., Hjuler, H. A., Terkelsen, C., Sanchez, M. T., Cleemann, L. N., & Krebs, F. C. (2012). Roll-to-roll coated PBI membranes for high temperature PEM fuel cells. Energy & Environmental Science, 5(3), 6076–6080.CrossRefGoogle Scholar
  23. 23.
    Park, J., Shin, K., & Lee, C. (2016). Roll-to-roll coating technology and its applications: a review. Internat-ional Journal of Precision Engineering and Manufac-turing, 17(4), 537–550.CrossRefGoogle Scholar
  24. 24.
    Brandenburg, G. (1976). New mathematical models for web tension and register error. Proceeding of the Third International IFAC Conference on Instrumentation and Automation in the paper, Rubber and Plastics Industries, 1, 24–26.Google Scholar
  25. 25.
    Altmann, H. C. (1968). Formulas for computing stresses in center-wound rolls. Tappi, 51, 176.Google Scholar
  26. 26.
    Lee, C., Kang, H., & Shin, K. (2010). A study on tension behavior considering thermal effects in roll-to-roll E-printing. Journal of Mechanical Science and Technology, 24(5), 1097–1103.CrossRefGoogle Scholar
  27. 27.
    Lee, J., Shin, K., & Lee, C. (2015). Analysis of dynamic thermal characteristic of register of roll-to-roll multi-layer printing systems. Robotics and Computer-Integrated Manufacturing, 35, 77–83.CrossRefGoogle Scholar
  28. 28.
    Burns, S., Meehan, R. R., & Lambropoulos, J. (1999). Strain-based formulas for stresses in profiled center-wound rolls. Tappi Journal, 82, 159–167.Google Scholar
  29. 29.
    Lee, J., & Lee, C. (2016). An advanced model for the numerical analysis of the radial stress in center-wound rolls. International Journal of Mechanical Sciences, 105, 360–368.CrossRefGoogle Scholar
  30. 30.
    Lee, C. (2018). Stresses and defects in roll products: A review of stress models and control techniques. International Journal of Precision Engineering and Manufacturing, 19(5), 781–789.CrossRefGoogle Scholar
  31. 31.
    Noh, J., Yeom, D., Lim, C., Cha, H., Han, J., Kim, J., et al. (2010). Scalability of roll-to-roll gravure-printed electrodes on plastic foils. IEEE Trans-Actions on Electronics Packaging Manufacturing, 33, 275–283.CrossRefGoogle Scholar
  32. 32.
    Lee, J., & Lee, C. (2018). Model-based winding tension profile to minimize radial stress in a flexible substrate in a roll-to-roll web transporting system. IEEE/ASME Transactions on Mechatronics, 23(6), 2928–2939.CrossRefGoogle Scholar
  33. 33.
    Kang, H., Lee, C., & Shin, K. (2013). Modeling and compensation of the machine directional register in roll-to-roll printing. Control Engineering Practice, 21, 645–654.CrossRefGoogle Scholar
  34. 34.
    Raul, P. R., & Pagilla, P. R. (2015). Design and implementation of adaptive PI control schemes for web tension control in roll-to-roll (R2R) manufacturing. ISA Transactions, 56, 276–287.CrossRefGoogle Scholar
  35. 35.
    Lee, J., Park, S., Shin, K., & Jung, H. (2018). Smearing defects: a root cause of register measurement error in roll-to-roll additive manufacturing system. The International Journal of Advanced Manufacturing Technology, 98(9–12), 3155–3165.CrossRefGoogle Scholar
  36. 36.
    Lee, J., Park, J., Jeong, H., Shin, K. H., & Lee, D. (2016). Optimization of printing conditions for microscale multiline printing in continuous roll-to-roll gravure printing. Journal of Industrial and Engineering Chemistry, 42, 131–141.CrossRefGoogle Scholar
  37. 37.
    Jang, J., Kitsomboonloha, R., Swisher, S. L., Park, E. S., Kang, H., & Subramanian, V. (2013). Transparent high-performance thin film transistors from solution-processed SnO2/ZrO2 gel-like precursors. Advanced Materials, 25(7), 1042–1047.CrossRefGoogle Scholar
  38. 38.
    Sommer-Larsen, P., Jørgensen, M., Søndergaard, R. R., Hösel, M., & Krebs, F. C. (2013). It is all in the pattern—high-efficiency power extraction from polymer solar cells through high-voltage serial connection. Energy Technology, 1, 15–19.CrossRefGoogle Scholar
  39. 39.
    Jeong, H., Park, S., Lee, J., Won, P., Ko, S. H., & Lee, D. (2018). Fabrication of transparent conductive film with flexible silver nanowires using roll-to-roll slot-die coating and calendering and its application to resistive touch panel. Advanced Electronic Materials, 4(11), 1800243.CrossRefGoogle Scholar
  40. 40.
    Xia, Z. C., & Hutchinson, J. W. (2000). Crack patterns in thin films. Journal of the Mechanics and Physics of Solids, 48(6), 1107–1131.zbMATHCrossRefGoogle Scholar
  41. 41.
    Chen, X., Lin, Y., Lu, Y., Qiu, M., Jing, W., & Fan, Y. (2015). A facile nanoparticle doping sol-gel method for the fabrication of defect-free nanoporous ceramic membranes. Colloids and Interface Science Communications, 5, 12–15.CrossRefGoogle Scholar
  42. 42.
    Zou, D., Qiu, M., Chen, X., & Fan, Y. (2017). One-step preparation of high-performance bilayer α-alumina ultrafiltration membranes via co-sintering process. Journal of Membrane Science, 524, 141–150.CrossRefGoogle Scholar
  43. 43.
    Kim, J., & Lin, Y. S. (1999). Synthesis and characterization of suspension-derived, porous ion-conducting ceramic memranes. Journal of the American Ceramic Society, 82(10), 2641–2646.CrossRefGoogle Scholar
  44. 44.
    Gaudon, M., Laberty-Robert, Ch., Ansart, F., & Stevens, P. (2006). “Thick YSZ films prepared via a modified sol–gel route: Thickness control (8–80 µm). Journal of the European Ceramic Society, 26, 3153–3160.CrossRefGoogle Scholar
  45. 45.
    Suo, Z., Ma, E., Gleskova, H., & Wagner, S. (1999). Mechanics of rollable and foldable film-on-foil electronics. Applied Physics Letters, 74(8), 1177–1179.CrossRefGoogle Scholar
  46. 46.
    Simwonis, D., Thülen, H., Dias, F. J., Naoumidis, A., & Stöver, D. (1999). Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix® process. Journal of Materials Processing Technology, 92, 107–111.CrossRefGoogle Scholar
  47. 47.
    Smith, R. (2001). Predicting evaporation rates and times for spills of chemical mixtures. The Annals of Occupational Hygiene, 45(6), 437–445.CrossRefGoogle Scholar
  48. 48.
    O’Hare, K. D., Spedding, P. L., & Grimshaw, J. (1993). Evaporation of the ethanol and water components comprising a binary liquid mixture. Developments in Chemical Engineering and Mineral Processing, 1(1–2), 118–128.Google Scholar
  49. 49.
    Pei, H., Wen, Z., Li, Z., Zhang, Y., & Yue, Z. (2018). Influence of surface roughness on the oxidation behavior of a Ni-4.0 Cr-5.7 Al single crystal superalloy. Applied Surface Science, 440(15), 790–803.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical Design and Production EngineeringKonkuk UniversitySeoulSouth Korea
  2. 2.School of Mechanical EngineeringChangwon National UniversityChangwonSouth Korea
  3. 3.Department of Mechanical EngineeringKonkuk UniversitySeoulSouth Korea

Personalised recommendations