Survey on Glass And Façade-Cleaning Robots: Climbing Mechanisms, Cleaning Methods, and Applications

  • TaeWon SeoEmail author
  • Youngjae Jeon
  • Changmin Park
  • Jongwon Kim
Review Paper


Cleaning dirty spaces is a very important task for human beings to maintain their quality of life. Recently, many high-rise buildings have been constructed, and their façades are easily contaminated by dust and pollution, especially in Asian countries such as China and Korea. Human workers are cleaning the façades, which are mostly made of glass, by hanging on to a gondola or rope, which entails spending a long time in midair, and this is dangerous work due to the risk of falling. To help humans avoid this dangerous and hard work, many researchers have tried to develop unmanned façade-cleaning robots; however, there are many issues to be solved before cleaning robots become efficient and popular. In this survey, we investigate and analyze robots used for cleaning building façades and glass. The robot are classified by types of climbing and attaching mechanisms, and their cleaning methods, mobility, and obstacle-overcoming performances are analyzed. In this paper, we also include for discussion some suggestions for making the robots more effective in real environments, and we expect that our work can provide reference to assist in the development of façade-cleaning robots for the real world.


Cleaning robot Wall-climbing robot Cleaning device Façade cleaning 



This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT for First-Mover Program for Accelerating Disruptive Technology Development (NRF-2018M3C1B9019309 and NRF-2018M3C1B9088328). The authors thank to Robust Design Engineering Laboratory members of Seoul National University for helping to investigate the Gangnam Building data.


  1. 1.
    Roomba, iRobot, Accessed 11 May 2018.
  2. 2.
    Robot Vacuums, Samsung Electronics, Accessed 11 May 2018.
  3. 3.
    Air Engine, Balmuda, Accessed 11 May 2018.
  4. 4.
    Korea occupational safety & health agency, Accessed 11 May 2018.
  5. 5.
    Skyscraper. (2018). Accessed 11 May 2018.
  6. 6.
    How much do commercial window clenaers cost?, Kompareit, Accessed 11 May 2018.
  7. 7.
    Kim, H., Kim, D., Yang, H., Lee, K., Seo, K., Chang, D. & Kim, J. (2006). A wall climbing robot with vacuum caterpillar wheel system operated by mechanical valve. In: Proc. of the 9th Int’l Conf. on Climb. and Walk. Rob. (pp. 28-33).Google Scholar
  8. 8.
    Zhu, J., Sun, D., & Tso, S. (2002). Development of a tracked climbing robot. Journal of Intelligent and robotic Systems, 35, 427–444.CrossRefGoogle Scholar
  9. 9.
    Yano, T., Suwa, T., Murakami, M., & Yamamoto, T. (1997). Development of a semi self-contained wall climbing robot with scanning type suction cups. In: Proc. of the 1997 IEEE/RSJ Int. Conf. Intel. Rob. And Sys. (pp. 900–905).Google Scholar
  10. 10.
    Longo, D., Muscato, G. and Sessa, S., “Simulation and locomotion control for the Alicia3 climbing robot. In: Proc. of the 22nd Int. Sym. on Auto. and Rob. in Const. (pp. 843–850).Google Scholar
  11. 11.
    Miyake, T., Ishihara, H., & Tomino, T. (2008). Vacuum-based wet adhesion system for wall climbing robots-lubricating action and seal action by the liquid. In: Proc. of the 2008 IEEE Int. Conf. on Rob. and Bio. (pp. 1824–1829).Google Scholar
  12. 12.
    Gambao, E., & Hernando, M. (2006) Control system for a semi-automatic facade cleaning robot. In: Proc. of the 2006 Int. Sym. on Auto. and Rob. in Const. (pp. 406–411).Google Scholar
  13. 13.
    Balaguer, C., Gimenez, A., & Jardon, A. (2005). Climbing robots’ mobility for inspection and maintenance of 3D complex environments. Autonomous Robots, 18(2), 157–169.CrossRefGoogle Scholar
  14. 14.
    Pack, R. T., Christopher, J. L., & Kawamura, K. (1997). A rubber actuator-based structure-climbing inspection robot. In: Proc. of the IEEE Int. Conf. on Rob. and Auto (pp. 1869–1874).Google Scholar
  15. 15.
    Hirose, S., & Arikawa, K. (2000). Coupled and decoupled actuation of robotic mechanisms. In: Proc. of the IEEE Int. Conf. on Rob. and Auto (pp. 33–39).Google Scholar
  16. 16.
    Minor, M., Dulimarta, H., Danghi, G., Mukherjee, R., Tummala, R. L. and Aslam, D., “Design, implementation, and evaluation of an under-actuated miniature biped climbing robot,” Proc. of the IEEE/RSJ Int. Conf. on Int. Rob. and Sys., pp. 1999-2005, 2000.Google Scholar
  17. 17.
    Loc, V. G., Kang, T. H., Song, H. S., & Choi, H. R. (2005). Gait planning of quadruped walking and climbing robot in convex corner environment. In: Proc. of the Int. Conf. on Cont., Auto. and Sys. (pp. 314–319).Google Scholar
  18. 18.
    Luk, B. L., Cooke, D. S., Galt, S., Collie, A. A., & Chen, S. (2005). Intelligent legged climbing service robot for remote maintenance applications in hazardous environments. Robotics and Autonomous System, 53(2), 142–152.CrossRefGoogle Scholar
  19. 19.
    Krosuri, S. P., & Minor, M. A. (2003). A multifunctional hybrid hip joint for improved adaptability in miniature climbing robots. In: Proc. of the IEEE Int. Conf. on Rob. & Auto. (pp. 312–317).Google Scholar
  20. 20.
    Brockmann, W. (2006). Concept for energy-autarkic, autonomous climbing robots. In: Proc. of the 9th Int. Conf. on Climb. and Walk. Rob (pp. 121–128).Google Scholar
  21. 21.
    Wang, Z., Bao, G., Zhang, L., & Yang, Q. (2007). Development and control of flexible pneumatic wall-climbing robot. Journal of Central South University of Technology, 16, 0961–0970.CrossRefGoogle Scholar
  22. 22.
    Hobot-198, Hobot Technology Inc. (2018). Accessed 28 Apr 2018.
  23. 23.
    Zhang, H., Zhang, J., Wang, W., Liu, R., & Zong, G. (2007). “A series of pneumatic glass-wall cleaning robots for high-rise buildings. Industrial Robot: An International Journal, 34(2), 150–160.CrossRefGoogle Scholar
  24. 24.
    Imaoka, N., Roh, S., Yusuke, N., & Hirose, S. (2010). SkyScraper-I: Tethered whole windows cleaning robot. In: Proc. of IEEE/RSJ Int. Conf. on Int. Rob. and Sys. (pp. 5460–5465).Google Scholar
  25. 25.
    Rosa, G. L., Messina, M., Muscato, G., & Sinatra, R. (2002). A low-cost lightweight climbing robot for the inspection of vertical surfaces. Mechatronics, 12(1), 71–96.CrossRefGoogle Scholar
  26. 26.
    Backes, P. G., Bar-Cohen, Y., & Joffe, B. (1997). The multifunction automated crawling system (MACS). In: Proceedings of IEEE International Conference on Robotics and Automation (pp. 335–340).Google Scholar
  27. 27.
    Bach, F. R.-W., Rachkov, M., Seevers, J., & Hahn, M. (1995). High tractive power wall-climbing robot. Automation in Construction, 4(3), 213–224.CrossRefGoogle Scholar
  28. 28.
    Apostolescu, T. C., Udrea, C., Duminica, D., Ionascu, G., Bogatu, L., & Cartal, L.A. (2011). Development of a climbing robot with vacuum attachment cups. In: Proc. of Int. Conf. on Inno.Google Scholar
  29. 29.
    TRIPILLAR, EPFL, Switzerland. (2018). Accessed 28 Apr 2018.
  30. 30.
    Winbot, Ecovacs. (2018). Accessed 28 Apr 2018.
  31. 31.
    Lee, G., Wu, G., Kim, S. H., Kim, J. & Seo, T. (2012). Combot: compliant climbing robotic platform with transitioning capability and payload capacity. In: Proc. of the IEEE Int. Conf. on Rob. and Auto (pp. 2737–2742).Google Scholar
  32. 32.
    Windowmate, RF. (2018.) Accessed 28 Apr 2018.
  33. 33.
    Hillenbrand, C., Schmidt, D., & Berns, K. (2008). CROMSCI: Development of a climbing robot with negative pressure adhesion for inspections. Industrial Robot: An International Journal., 35(3), 228–237.CrossRefGoogle Scholar
  34. 34.
    Shang, J., Bridge, B., Sattar, T., Mondal, S., & Brenner, A. (2008). “Development of a climbing robot for inspection of long weld lines. Industrial Robot: An International Journal, 35(3), 217–223.CrossRefGoogle Scholar
  35. 35.
    Sanchez, J., Vazquez, F., & Paz, E. (2006). Machine vision guidance system for a modular climbing robot used in shipbuilding. In: Proceedings of the 9th International Conference on Climbing and Walking Robots (pp. 893–900).Google Scholar
  36. 36.
    Han, S.-C., Kim, J., & Yi, H.-C. (2009). A novel design of permanent magnet wheel with induction pin for mobile robot. International Journal of Precision Engineering and Manufacturing, 10(4), 143–146.CrossRefGoogle Scholar
  37. 37.
    Morris, W., & Xiao, J. (2008). City-climber: Development of a novel wall-climbing robot. Journal of Student Res, 1, 40–45.Google Scholar
  38. 38.
    Menon, C., & Sitti, M. (2006). A biomimetic climbing robot based on the Gecko. Journla of Bionic Engineering, 3(3), 115–125.CrossRefGoogle Scholar
  39. 39.
    Santos, D., Kim, S., Spenko, M., Parness, A., & Cutkosky, M. (2007) Directional adhesive structures for controlled climbing on smooth vertical surfaces. In: Proceedings of the IEEE Int. International Conference on Robotics and Automation (pp. 1262–1267).Google Scholar
  40. 40.
    Armada, M., Prieto, M., Akinfiev, T., Fernandez, R., Gonzalez, P., Garcia, E., et al. (2005). On the design and development of climbing and walking robots for the maritime industries. Maritime Research, 2(1), 9–32.Google Scholar
  41. 41.
    Kotay, K., & Rus, D. L. (1996). Navigating 3D steel web structures with an inchworm robot. In: Proceedings of the International Conference on Intelligent Robots and Systems (pp. 368–375).Google Scholar
  42. 42.
    Faina, A., Souto, D., Deibe, A., Lopez-Pena, F., Duro, R. J., & Fernandez, X. (2009). Development of a climbing robot for grit blasting operations in shipyards. In: Proceedings of the IEEE International Conference on Robotics and Automation (pp. 200–205).Google Scholar
  43. 43.
    Wang, W., Tang, B., Zhang, H., & Zong, G. (2010). Robotic cleaning system for glass facade of high-rise airport control tower. Industrial Robot: An International Journal, 37(5), 469–478.CrossRefGoogle Scholar
  44. 44.
    Elkmann, N., Kunst, D., Krueger, T., Lucke, M., Bohme, T., Felsch, T., & Sturze, T. (2004). SIRIUSc: facade cleaning robot for a high-rise building in Munich, Germany. In: Proceedings of the 7th Internation Conference of Climbing and Walking Robots. (pp. 1033–1040).Google Scholar
  45. 45.
    Kim, T., Kim, J., Seo, K., Kim, H., Lee, G., Kim, J., et al. (2014). Design and control of a cleaning unit for a novel wall-climbing robot. Applied Mechanics and Materials, 541–542, 1092–1096.CrossRefGoogle Scholar
  46. 46.
    Akinfiev, T., Armada, M., & Nabulsi, S. (2009). Climbing cleaning robot for vertical surfaces. Industrial Robot: An International Journal, 36(4), 352–357.CrossRefGoogle Scholar
  47. 47.
    Highrise. (2018). IPC Eagle, Accessed 28 Apr 2018.
  48. 48.
    Manntech. (2018). Façade cleaning systems. (retrieved at Apr. 28, 2018)
  49. 49.
    Warszawski, A. (1999). Industrialized and automated building systems-a managerial approach (2nd ed.). Abingdon: Taylor & Francis.Google Scholar
  50. 50.
    Qian, Z., Zhao, Y., Fu, Z., & Cao, Q. (2006). Design and realization of a non-actuated glass-curtain wall-cleaning robot prototype with dual suction cups. International Journal of Advanced Manufacturing Technology, 30, 147–155.CrossRefGoogle Scholar
  51. 51.
    Schraft, R. D., Brauning, U., Orlowski, T., & Hornemann, M. (2000). Automated cleaning of windows on standard facades. Automation in Construction, 9, 489–501.CrossRefGoogle Scholar
  52. 52.
    Seo, T., & Sitti, M. (2013). Tank-like module-based climbing robot using passive compliant joints. IEEE/ASME Transactions on Mechatronics, 18(1), 397–408.CrossRefGoogle Scholar
  53. 53.
    Unver, O., & Sitti, M. (2010). Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads. International Journal of Robotics Research, 29(14), 1761–1777.CrossRefGoogle Scholar
  54. 54.
    Daltorio, K., Gorb, S., Peressadko, A., Horchler, A. D., Ritzmann, R. E. & Quinn, R. D. (2006). A robot that climbs walls using micro-structured polymer feet. In: Proceeedings of the 8th Climbing and Walking Robots (pp. 131–138).Google Scholar
  55. 55.
    Chung, W.K., Li, J., Chen, Y., and Xu, Y. (2011). A novel design of movable gripper for non-enclosable truss climbing. In: Proceeedings of the International Conference on Robotics and Automation (pp. 519–525).Google Scholar
  56. 56.
    Waal-E. (2018). NanoRobotics Lab, k80fKwsga40/(retrieved at Apr. 28, 2018).
  57. 57.
    Murphy, M. P., Tso, W., Tanzini, M. and Sitti, M. (2006). Waalbot: an agile small-scale wall climbing robot utilizing pressure sensitive adhesives. In: Proceeedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3411–3416).Google Scholar
  58. 58.
    Balaguer, C., Gimenez, A., & Abderrahim, M. (2002). ROMA robots for inspection of steel based infrastructures. Industrial Robot: An International Journal, 29(3), 246–251.CrossRefGoogle Scholar
  59. 59.
    Provancher, W. R., Jensen-segal, S. I., & Fehlberg, M. A. (2010). ROCR: an energy-efficient dynamic wall-climbing robot. IEEE/ASME Transactions on Mechatronics, 16(5), 897–906.CrossRefGoogle Scholar
  60. 60.
    Serna, M. A., Avello, A., Briones, L., & Bustamante, P. (1998). ROBICEN: A pneumatic climbing robot for inspection of pipes and tanks. Lecture Notes in Control and Information Science, 232, 325–334.CrossRefzbMATHGoogle Scholar
  61. 61.
    Liu, Y., & Seo, T. (2018). AnyClimb-II: dry-adhesive linkage-type climbing robot for uneven vertical surfaces. Mechanism and Machine Theory, 124, 197–210.CrossRefGoogle Scholar
  62. 62.
    Zhu, J., Sun, D., & Tso, S.-K. (2003). Application of a service climbing robot with motion planning and visual sensing. Journal of Robotic Systems, 20(4), 189–199.CrossRefGoogle Scholar
  63. 63.
    Daum Road View. (2018). Accessed 26 Apr 2018.
  64. 64.
    Bisoh, Japan. (2018). Accessed 26 Apr 2018.
  65. 65.
    Moon, S. M., Shin, C. Y., Hun, J., Oh, K. W., & Hong, D. (2015). Window cleaning system with water circulation for building façade maintenance robot and its efficiency analysis. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(1), 65–72.CrossRefGoogle Scholar
  66. 66.
    Lee, Y. S., Kim, S. H., Gil, M. S., Lee, S. H., Kang, M. S., Jang, S. H., et al. (2018). The study on the integrated control system for curtain wall building façade cleaning robot. Automation in Construction, 94, 39–45.CrossRefGoogle Scholar
  67. 67.
    Skyprocy, Cyprus. (2018). Accessed 26 Apr 2018.
  68. 68.
    Joo, I., Hong, J., Yoo, S., Kim, J., Kim, H. S., & Seo, T. (2019). Parallel 2-DoF manipulator for wall-cleaning applications. 101, 209–217.Google Scholar
  69. 69.
    Pufeng Intelligent Technology Co. Ltd., China, Accessed 26 Apr 2018.
  70. 70.
    Hong, J., Yoo, S., Joo, I., Kim, J., Kim, H. S., & Seo, T. (2019). Optimal parameter design of a cleaning device for vertical glass surfaces. International Journal of Precision Engineering and Manufacturing. Scholar
  71. 71.
    Mir-Nasari, N., Siswoyo, H., Ali, M. H. (2018) Portable autonomous window cleaning robot. In: Proc. of Int’l Conf. on Robotics and Smart Manufacturing, 133, (pp. 197–204).Google Scholar
  72. 72.
    Abramson, S., Levin, S., Gur, D. (2017). Window cleaning robot. US patent, US20170164797A1, 2017.Google Scholar
  73. 73.
    Nansai, S., Elara, M. R., Tun, T. T., Veerajagadheswar, P., & Pathmakumar, T. (2017). A novel nested reconfigurable approach for a glass façade cleaning robot. Inventions, 2(3), 18.CrossRefGoogle Scholar
  74. 74.
    Nansai, S., Onodera, K., Elara, M. R. (2017). Development of a modular robot for glass façade cleaning robot. In\:Proc. Of Int’l Conf. on Advanced Engineering (pp. 704–714).Google Scholar
  75. 75.
    Ko, H., Yi, H., & Joeng, H. E. (2017). Wall and ceiling climbing quadruped robot with superior water repellency manufacturing using 3D printing (UNIclimb). International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 273–280.CrossRefGoogle Scholar
  76. 76.
    Yi, H., Hwang, I., Sung, M., Lee, D., Kim, J. H., Kang, S. M., et al. (2014). “Bio-inspired adhesive systems for next-generation green manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 347–351.CrossRefGoogle Scholar
  77. 77.
    Choi, H., & Jeong, S. (2018). A review on eco-friendly quantum dot solar cells: materials and manufacturing process. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 349–358.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringHanyang UniversitySeoulRepublic of Korea
  2. 2.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations