Tribological Conditions Using CO2 as Volatile Lubricant in Dry Metal Forming

  • Mathias Liewald
  • Günter E. M. Tovar
  • Christoph WoerzEmail author
  • Georg UmlaufEmail author
Regular Paper


Deep drawing is the most important manufacturing process in order to produce sheet metal parts in mass production. In this study, volatile carbon dioxide (CO2) is used as lubricant in order to replace mineral oil-based lubricants. CO2 is injected into the void between the forming tool and the metal part through laser drilled microholes in the forming tool and acts there as a highly efficient lubricant. In order to investigate the tribological conditions during the drawing process, a new test bench having optical access to the CO2 lubricant is designed, built and used in this study. Additionally, the CO2 flow through the microholes is modeled using CFD simulation. Both the experimental and the theoretical study reveal a critical influence of the geometry of the microholes on the phase of the CO2 in the forming tool and on the friction during the drawing process. Thereby, these investigations confirm that the CO2 is in solid and/or gaseous state dependent on the surface pressure and the geometry of the microholes. Consequently, these results support the concept of microstructure-designed forming tools allowing dry metal forming for locally adjusted and environmentally friendly friction conditions.


Dry forming Dry ice Sheet metal forming Tribology 



Cross-section area of the microholes


Diameter of the microholes


Computational fluid dynamics


Coefficient of friction


Carbon dioxide


Normal force


Restraining force


Mass flow






Drawing velocity




Room temperature


Volume flow rate


Coefficient of friction


Joule–Thomson coefficient



The scientific investigations of this paper are funded by the German Research Foundation (DFG) (Grant No. 282210782) within the priority program SPP 1676 Dry Metal Forming—Sustainable Production by Dry Processing in Metal Forming. More Information can be found at:


  1. 1.
    Sørensen, F., & Petersen, H. S. (1994). Formulation and recycling of water-based degreasing agents. effects on occupational health and environmental protection. Hazardous Waste and Hazardous Materials, 11(3), 361–370.CrossRefGoogle Scholar
  2. 2.
    Merklein, M., Andreas, K., & Steiner, J. (2015). Influence of tool surface on tribological conditions in conventional and dry sheet metal forming. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 131–137.CrossRefGoogle Scholar
  3. 3.
    Böhmermann, F., Hasselbruch, H., Herrmann, M., et al. (2015). Dry rotary swaging–approaches for lubricant free process design. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(4), 325–331.CrossRefGoogle Scholar
  4. 4.
    Tenner, J., Zhao, R., Tremmel, S., et al. (2018). Tribological behavior of carbon based coatings adapted to lubricant-free forming conditions. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 361–367.CrossRefGoogle Scholar
  5. 5.
    Vollertsen, F., & Schmidt, F. (2014). Dry metal forming: definition, chances and challenges. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 1–4.CrossRefGoogle Scholar
  6. 6.
    Krieg, M. C. (2008). Analyse der Effekte beim Trockeneisstrahlen. In E. Uhlmann (Ed.), Berichte aus dem Produktionstechnischen Zentrum Berlin. Stuttgart: Fraunhofer-IRB-Verl.Google Scholar
  7. 7.
    Mishina, H. (1992). Atmospheric characteristics in friction and wear of metals. Wear, 152(1), 99–110.CrossRefGoogle Scholar
  8. 8.
    Mishina, H. (1995). Chemisorption of diatomic gas molecules and atmospheric characteristics in adhesive wear and friction of metals. Wear, 180(1–2), 1–7.CrossRefGoogle Scholar
  9. 9.
    Wu, X., Cong, P., Nanao, H., Minami, I., & Mori, S. (2004). Tribological behaviors of 52100 steel in carbon dioxide atmosphere. Tribology Letters, 17(4), 925–930.CrossRefGoogle Scholar
  10. 10.
    Velkavrh, I., Ausserer, F., Klien, S., Brenner, J., Forêt, P., & Diem, A. (2014). The effect of gaseous atmospheres on friction and wear of steel-steel contact. Tribology International, 79, 99–110.CrossRefGoogle Scholar
  11. 11.
    Velkavrh, I., Ausserer, F., Klien, S., Voyer, J., Ristow, A., Brenner, J., et al. (2016). The influence of temperature on friction and wear of unlubricated steel/steel contacts in different gaseous atmospheres. Tribology International, 98, 155–171.CrossRefGoogle Scholar
  12. 12.
    Singer, M., Liewald, M., & Feuer, A. (2015). Development of a new ecological lubrication system for sheet metal forming based on CO2 in liquid. Key Engineering Materials, 651–653, 480–485.CrossRefGoogle Scholar
  13. 13.
    Singer, M., & Liewald, M. (2015). Evaluation of different influencing factors in dry sheet metal forming with vaporizing CO2 used as lubricant. Applied Mechanics and Materials, 794, 53–58.CrossRefGoogle Scholar
  14. 14.
    Woerz, C., Liewald, M., & Singer, M., (2016). Investigation of tribological conditions in the strip drawing test using liquid CO2 and N2 as a volatile lubricant. In Proceedings of 7th ICTMP (pp. 140–148).Google Scholar
  15. 15.
    Wörz, C., Zahedi, E., Umlauf, G., Liewald, M., Weber, R., Graf, T., et al. (2017). Tiefziehen eines U-Profils mit flüchtigen Medien als Schmierstoffersatz. Dry Metal Forming Open Access Journal, 3, 50–61.Google Scholar
  16. 16.
    Böswirth, L., & Bschorer, S. (2014). Technische Strömungslehre (10th ed.). Wiesbaden: Springer.Google Scholar
  17. 17.
    Bauer, H. F. (1987). Mass transport in a three-dimensional diffusor or confusor. Wärme-und Stoffübertragung, 21(1), 51–64.CrossRefGoogle Scholar
  18. 18.
    Atkins, P. W., & de Paula, J. (2014). Physical chemistry (10th ed.). Oxford: Oxford University Press.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Institute for Metal Forming TechnologyUniversity of StuttgartStuttgartGermany
  2. 2.Institute of Interfacial Process Engineering and Plasma TechnologyUniversity of StuttgartStuttgartGermany
  3. 3.Fraunhofer Institute for Interfacial Engineering and Biotechnology, Fraunhofer IGBStuttgartGermany

Personalised recommendations