Robust and Chemically Stable Superhydrophobic Aluminum-Alloy Surface with Enhanced Corrosion-Resistance Properties

  • Sumit Barthwal
  • Si-Hyung LimEmail author
Regular Paper


We report a simple method for fabricating micro-nanoscale structures consisting of irregular microscale plateaus with a self-assembled network of zinc oxide nanopetals on an aluminum alloy substrate. The method involves a combination of chemical etching with a hydrothermal process, followed by Polydimethylsiloxane coating via a simple vapor deposition method. Following the coating, surface displays superhydrophobicity with water contact angle of 161° and a sliding angle of 4°. The effect of morphological changes on wettability is examined by varying the hydrothermal processing time. The chemical stability of the superhydrophobic surfaces is examined in a wide range of corrosive media. After being immersed in a 3.5 wt% NaCl solution for 1 month, the surface retained its superhydrophobicity. The potentiodynamic polarization test results reveal that the superhydrophobic surface highly improves the corrosion resistance performance of the bare aluminum surface by three orders of magnitude. In addition, surface exhibited good mechanical durability against sandpaper abrasion, and long-term stability in the ambient environment. The proposed fabrication technique operating at relatively low temperature is simple and provides a new approach for production of large-scale three-dimensional superhydrophobic surfaces for various applications.


Superhydrophobic Al alloy ZnO Micro-nano Anti-corrosion Durability 



This research was supported by the National Research Foundation (NRF) funded by the Ministry of Science, Republic of Korea (Grant number: 2016R1A2B3015530).


  1. 1.
    Yao, X., Song, Y. L., & Jiang, L. (2011). Applications of bio-inspired special wettable surfaces. Advanced Materials, 23(6), 719–734.CrossRefGoogle Scholar
  2. 2.
    Blossey, R. (2003). Self-cleaning surfaces-virtual realities. Nature Materials, 2, 301–306.CrossRefGoogle Scholar
  3. 3.
    Boinovich, L. B., Emelyanenko, A. M., Ivanov, V. K., & Pashinin, A. S. (2013). Durable icephobic coating for stainless steel. ACS Applied Materials & Interfaces, 5(7), 2549–2554.CrossRefGoogle Scholar
  4. 4.
    Jung, Y., Jung, K. K., Park, B. G., & Ko, J. S. (2018). Capacitive oil detector using hydrophobic and oleophilic PDMS sponge. International Journal of Precision Engineering and Manufacturing, 5(2), 303–309.CrossRefGoogle Scholar
  5. 5.
    Liu, H. Q., Szunerits, S., Xu, W. G., & Boukherroub, R. (2009). Preparation of superhydrophobic coatings on zinc as effective corrosion barriers. ACS Applied Materials & Interfaces, 1, 1150–1153.CrossRefGoogle Scholar
  6. 6.
    Zheng, S., Li, C., Fu, Q., Hu, W., Xiang, T., Wang, Q., et al. (2016). Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant, self-cleaning, and anti-icing applications. Materials and Design, 93, 261–270.CrossRefGoogle Scholar
  7. 7.
    Lee, C., & Kim, C. (2011). Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Journal of Physical Review Letters, 106, 0145021–0145024.Google Scholar
  8. 8.
    Kobayashi, M., Terayama, Y., Yamaguchi, H., Terada, M., Murakami, D., Ishihara, K., et al. (2012). Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir, 28, 7212–7222.CrossRefGoogle Scholar
  9. 9.
    Kwon, Y., Patanker, N., Choi, J., & Lee, J. (2009). Design of surface hierarchy for extreme hydrophobicity. Langmuir, 25, 6129–6136.CrossRefGoogle Scholar
  10. 10.
    Xu, L., Karunakaran, R. G., Guo, J., & Yang, S. (2012). Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles. ACS Applied Materials & Interfaces, 4(2), 1118–1125.CrossRefGoogle Scholar
  11. 11.
    Wu, X., Fu, Q., Kumar, D., Ho, J. W. C., Kanhere, P., Zhou, H., et al. (2016). Mechanically robust superhydrophobic and superoleophobic coatings derived by sol–gel method. Materials and Design, 89, 1302–1309.CrossRefGoogle Scholar
  12. 12.
    Ko, H., Yi, H., & Jeong, H. E. (2017). Wall and Ceiling Climbing Quadruped Robot with Superior Water Repellency Manufactured Using 3D Printing (UNIclimb). International Journal of Precision Engineering and Manufacturing, 4(3), 273–280.CrossRefGoogle Scholar
  13. 13.
    Zhu, Y., Zhang, J. C., Zheng, Y. M., Huang, Z. B., Feng, L., & Jiang, L. (2006). Superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Advanced Functional Materials, 16, 568–574.CrossRefGoogle Scholar
  14. 14.
    Xu, W., Song, J., Sun, J., Lu, Y., & Yu, Z. (2011). Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. Applied Materials & Interfaces, 3, 4404–4414.CrossRefGoogle Scholar
  15. 15.
    Lee, S. H., Lee, J. H., Park, C. W., Lee, C. Y., Kim, K., et al. (2014). Continuous fabrication of bio-inspired water collecting surface via roll-type photolithography. International Journal of Precision Engineering and Manufacturing, 1(2), 119–124.CrossRefGoogle Scholar
  16. 16.
    Guo, W. X., Li, X. Y., Chen, M. X., Xu, L., Dong, L., Cao, X., et al. (2014). Electrochemical cathodic protection powered by triboelectric nanogenerator. Advanced Functional Materials, 24, 6691–6699.CrossRefGoogle Scholar
  17. 17.
    Deshpande, P. P., Jadhav, N. G., Gelling, V. J., & Sazou, D. (2014). Conducting polymers for corrosion protection: a review. Journal of Coatings Technology and Research, 11, 473–494.CrossRefGoogle Scholar
  18. 18.
    Gandel, D. S., Easton, M. A., Gibson, M. A., Abbott, T., & Birbilis, N. (2014). The influence of zirconium additions on the corrosion of magnesium. Corrosion Science, 81, 27–35.CrossRefGoogle Scholar
  19. 19.
    Zhang, F., Zhao, L., Chen, H., Xu, S., Evans, D. G., & Duan, X. (2008). Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angewandte Chemie International Edition, 47, 2466–2469.CrossRefGoogle Scholar
  20. 20.
    Lv, D., Ou, J., Xue, M., & Wang, F. (2015). Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution. Applied Surface Science, 333, 163–169.CrossRefGoogle Scholar
  21. 21.
    Zhang, B., Zhao, X., Li, Y., & Hou, B. (2016). Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach. RSC Advance, 6, 35455–35465.CrossRefGoogle Scholar
  22. 22.
    Boinovich, L. B., Emelyanenko, A. M., Modestov, A. D., Domantovsky, A. G., & Emelyanenko, K. A. (2015). Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment. ACS Applied Materials & Interfaces, 7, 19500–19508.CrossRefGoogle Scholar
  23. 23.
    Yin, Y., Liu, T., Chen, S., Liu, T., & Cheng, S. (2008). Structure stability and corrosion inhibition of superhydrophobic film on aluminum in seawater. Applied Surface Science, 255, 2978–2984.CrossRefGoogle Scholar
  24. 24.
    Suh, Y. D., Hong, S. J., Kim, G. H., Hwang, K. I., Choi, J. H., et al. (2016). Selective electro-thermal growth of zinc oxide nanowire on photolithographically patterned electrode for microsensor applications. International Journal of Precision Engineering and Manufacturing, 3(2), 173–177.CrossRefGoogle Scholar
  25. 25.
    Gurav, A. B., Latthe, S. S., Vhatkar, R. S., Lee, J. G., Kim, D. Y., Park, J. J., et al. (2014). Superhydrophobic surface decorated with vertical ZnO nanorods modified by stearic acid. Ceramics International, 40, 7151–7160.CrossRefGoogle Scholar
  26. 26.
    Yeo, J., Kim, G., Hong, S., Lee, J., Kwon, J., Lee, H., et al. (2014). “Single nanowire resistive nano-heater for highly localized thermo-chemical reactions: localized hierarchical heterojunction nanowire growth. Small, 10(24), 5015–5022.CrossRefGoogle Scholar
  27. 27.
    Qian, B. T., & Shen, Z. Q. (2005). Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir, 21, 9007–9009.CrossRefGoogle Scholar
  28. 28.
    Cheng, J. P., Zhang, X. B., & Luo, Z. Q. (2008). Oriented growth of ZnO nanostructures on Si and Al substrates. Surface & Coatings Technology, 202, 4681–4686.CrossRefGoogle Scholar
  29. 29.
    Liu, J., Xu, L., Wei, B., Lv, W., Gao, H., & Zhang, X. (2011). One-step hydrothermal synthesis and optical properties of aluminium doped ZnO hexagonal nanoplates on a zinc substrate. CrystEngComm, 13, 1283–1286.CrossRefGoogle Scholar
  30. 30.
    Zhu, X. T., Zhang, Z. Z., Yang, J., Xu, X. H., Men, X. H., & Zhou, X. Y. (2012). “Facile fabrication of a superhydrophobic fabric with mechanical stability and easy-repairability. Journal of Colloid Interface and Science, 380, 182–186.CrossRefGoogle Scholar
  31. 31.
    Lee, S. M., Kim, K. S., Pippel, E., Kim, S., Kim, J. H., & Lee, H. J. (2012). Facile route toward mechanically stable superhydrophobic copper using oxidation_reduction induced morphology changes. Journal of Physical Chemistry C, 116, 2781–2790.CrossRefGoogle Scholar
  32. 32.
    Guo, F., Su, X. J., Hou, G. L., & Li, P. (2012). Bioinspired fabrication of stable and robust superhydrophobic steel surface with hierarchical flowerlike structure. Colloid Surface A, 401, 61–67.CrossRefGoogle Scholar
  33. 33.
    Maitra, T., Antonini, C., Mauer, M. A., Stamatopoulos, C., Tiwari, M. K., & Poulikakos, D. (2014). Hierarchically nanotextured surfaces maintaining superhydrophobicity under severely adverse conditions. Nanoscale, 6, 8710–8719.CrossRefGoogle Scholar
  34. 34.
    Liu, Y., Liu, J., Li, S., Han, Z., Yu, S., & Ren, L. (2014). Fabrication of biomimetic super-hydrophobic surface on aluminum alloy. Journal of Materials Science, 49, 1624–1629.CrossRefGoogle Scholar
  35. 35.
    Liang, J., Hu, Y., Wu, Y., & Chen, H. (2013). Fabrication and corrosion resistance of superhydrophobic hydroxide zinc carbonate film on aluminum substrates. Journal of Nanomaterials, 2013, 139768 (6 pages).Google Scholar
  36. 36.
    Zheng, S., Li, C., Fu, Q., Li, M., Hu, W., Wang, Q., et al. (2015). Fabrication of self-cleaning superhydrophobic surface on aluminium alloys with excellent corrosion resistance. Surface & Coatings Technology, 276, 341–348.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Nanomechatronics LabKookmin UniversitySeoulSouth Korea
  2. 2.School of Mechanical EngineeringKookmin UniversitySeoulSouth Korea

Personalised recommendations