The Effect of Maleic Anhydride Polyethylene on Mechanical Properties of Pineapple Leaf Fibre Reinforced Polylactic Acid Composites

  • Januar Parlaungan SiregarEmail author
  • Jamiluddin Jaafar
  • Tezara Cionita
  • Choo Chee Jie
  • Dandi Bachtiar
  • Mohd. Ruzaimi Mat Rejab
  • Yuli Panca Asmara
Regular Paper


The study of natural fiber composite in the field of materials has indeed sparked interest among many due to its essential biodegradability feature. As such, pineapple leaf fiber (PALF) is not only biodegradable, but also environmental friendly, as opposed to synthetic fiber. Hence, this paper investigates the effect of fiber loading, as well as the inclusion of maleic anhydride polyethylene (MAPE) to the mechanical properties of PALF reinforced polylactic acid composites. Therefore, untreated PALF with 0, 5, 10, and 15% of weight content ratio, as well as PALF at 10% weight ratio treated with 2, 4, and 6% of MAPE, had been prepared via roll mill mixing at 190 °C and followed by hot compression molding to prepare the specimen sheets. The results obtained from this study revealed that the tensile strength (TS) and the Young’s modulus were at their highest levels for untreated 10% PALF, while the impact and the flexure properties displayed a decrease as the content of fiber increased. Other than that, the inclusion of MAPE indicated that the tensile properties exhibited lower value compared to that of untreated. However, the flexural and the impact properties of composites increased with the presence of MAPE. As a conclusion, the study demonstrates that the mechanical properties depended on two major factors; (1) fiber loading, and (2) the compatibility between matrix polymer and fiber.


Natural fibre Polylactic acid Pineapple leaf Mechanical properties 



American Society for testing and materials


Maleic anhydride polyethylene


Pineapple leaf fibre


Tensile strength







The authors wish to thank the Malaysian Ministry of Higher Education for funding the research through the Fundamental Research Grant Scheme (FRGS) with grant number RDU 140120. The authors are also obliged to express their gratitude to Universiti Malaysia Pahang for generously providing essential laboratory facilities.


  1. 1.
    Singha, A., & Thakur, V. K. (2008). Mechanical properties of natural fibre reinforced polymer composites. Bulletin of Materials Science, 31(5), 791–799.Google Scholar
  2. 2.
    Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydrate Polymers, 86(1), 1–18.Google Scholar
  3. 3.
    Rashid, B., Leman, Z., Jawaid, M., et al. (2016). The mechanical performance of sugar palm fibres (ijuk) reinforced phenolic composites. International Journal of Precision Engineering and Manufacturing, 17(8), 1001–1008.Google Scholar
  4. 4.
    Lee, M. S., Seo, H. Y., & Kang, C. G. (2016). Comparative study on mechanical properties of CR340/CFRP composites through three point bending test by using theoretical and experimental methods. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 359–365.Google Scholar
  5. 5.
    Yun, I. S., Hwang, S. W., Shim, J. K., et al. (2016). A study on the thermal and mechanical properties of poly (butylene succinate)/thermoplastic starch binary blends. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(3), 289–296.Google Scholar
  6. 6.
    Satyanarayana, K. G., Sukumaran, K., Mukherjeem, R. S., et al. (1990). Natural fibre-polymer composites. Cement and Concrete composites, 12, 117–136.Google Scholar
  7. 7.
    Mohammed, L., Ansari, M. N., Pua, G., Jawaid, M., Islam, M.S., (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, 2015, 1–15.Google Scholar
  8. 8.
    Dicker, M. P., Duckworth, P. F., Baker, A. B., et al. (2014). Green composites: A review of material attributes and complementary applications. Composites part A: applied science and manufacturing, 56, 280–289.Google Scholar
  9. 9.
    Davoodi, M., Sapuan, S., Ahmad, D., et al. (2010). Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Materials and Design, 31(10), 4927–4932.Google Scholar
  10. 10.
    Mohanty, A., Misra, M., & Hinrichsen, G. (2000). Biofibers, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering, 276(1), 1–24.Google Scholar
  11. 11.
    Bledzki, A. K., Faruk, O., & Sperber, V. E. (2006). Cars from bio-fibres. Macromolecular Materials and Engineering, 291(5), 449–457.Google Scholar
  12. 12.
    Suddell, B. C., & Evans, W. J. (2005). Natural fiber composites in automotive applications, natural fibres, biopolymers and biocomposites (Vol. 37). Boca Raton: CRC.Google Scholar
  13. 13.
    Cicala, G., Cristaldi, G., Recca, G., et al. (2009). Properties and performances of various hybrid glass/natural fibre composites for curved pipes. Materials and Design, 30(7), 2538–2542.Google Scholar
  14. 14.
    Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M., et al. (2015). A review on pineapple leaves fibre and its composites. International Journal of Polymer Science, 2015, 1–16.Google Scholar
  15. 15.
    Mukherjee, T., & Kao, N. (2011). PLA based biopolymer reinforced with natural fibre: a review. Journal of Polymers and the Environment, 19(3), 714–725.Google Scholar
  16. 16.
    Bongarde, U. S., & Shinde, V. D. (2014). Review on natural fiber reinforcement polymer composites. International Journal of Engineering Science and Innovative Technology (IJESIT), 3(2), 431–436.Google Scholar
  17. 17.
    Ku, H., Wang, H., Pattarachaiyakoop, N., et al. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856–873.Google Scholar
  18. 18.
    Kim, J.-H., Shim, B. S., Kim, H. S., et al. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197–213.Google Scholar
  19. 19.
    Hempel, F., Bozarth, A. S., Lindenkamp, N., et al. (2011). Microalgae as bioreactors for bioplastic production”. Microbial Cell Factories, 10(1), 81.Google Scholar
  20. 20.
    Rochman, C. M., Browne, M. A., Halpern, B. S., et al. (2013). Policy: classify plastic waste as hazardous. Nature, 494(7436), 169–171.Google Scholar
  21. 21.
    Okada, M. (2002). Chemical syntheses of biodegradable polymers. Progress in Polymer Science, 27(1), 87–133.MathSciNetGoogle Scholar
  22. 22.
    Kengkhetkit, N., & Amornsakchai, T. (2012). Utilisation of pineapple leaf waste for plastic reinforcement : 1. A novel extraction method for short pineapple leaf fiber. Industrial Crops and Products, 40, 55–61.Google Scholar
  23. 23.
    Yusof, Y., Yahya, S. A., & Adam, A. (2015). Novel technology for sustainable pineapple leaf fibers productions. Procedia CIRP, 26, 756–760.Google Scholar
  24. 24.
    Neto, A. R. S., Araujo, M. A., Souza, F. V., et al. (2013). Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Industrial Crops and Products, 43, 529–537.Google Scholar
  25. 25.
    Graupner, N., Herrmann, A. S., & Müssig, J. (2009). Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Composites Part A: Applied Science and Manufacturing, 40(6–7), 810–821.Google Scholar
  26. 26.
    Orue, A., Jauregi, A., Peña-Rodriguez, C., et al. (2015). The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Composites Part B: Engineering, 73, 132–138.Google Scholar
  27. 27.
    Paglicawan, M. A., Kim, B. S., Basilia, B. A., et al. (2014). Plasma-treated abaca fabric/unsaturated polyester composite fabricated by vacuum-assisted resin transfer molding. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), 241–246.Google Scholar
  28. 28.
    Taj, S., Munawar, M. A., & Khan, S. (2007). Natural fiber-reinforced polymer composites. Proceedings-Pakistan Academy of Sciences, 44(2), 129.Google Scholar
  29. 29.
    Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment, 15(1), 25–33.Google Scholar
  30. 30.
    Alvarez, V. A., Ruscekaite, R. A., & Vazquez, A. (2003). Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers. Journal of Composite Materials, 37(17), 1575–1588.Google Scholar
  31. 31.
    Ganster, J., & Fink, H.-P. (2006). Novel cellulose fibre reinforced thermoplastic materials. Cellulose, 13(3), 271–280.Google Scholar
  32. 32.
    Oksman, K., Skrifvars, M., & Selin, J.-F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317–1324.Google Scholar
  33. 33.
    García, M., Garmendia, I., & García, J. (2008). Influence of natural fiber type in eco-composites. Journal of Applied Polymer Science, 107(5), 2994–3004.Google Scholar
  34. 34.
    Jia, W., Gong, R. H., & Hogg, P. J. (2014). Poly (lactic acid) fibre reinforced biodegradable composites”. Composites Part B: Engineering, 62, 104–112.Google Scholar
  35. 35.
    Siregar, J. P., Salit, M. S., Rahman, M. Z. A., et al. (2011). Thermogravimetric analysis (TGA) and differential scanning calometric (DSC) analysis of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Pertanika Journal of Science & Technology, 19(1), 161–170.Google Scholar
  36. 36.
    Siregar, J., Sapuan, S., Rahman, M., et al. (2012). Effects of alkali treatments on the tensile properties of pineapple leaf fibre reinforced high impact polystyrene composites. Pertanika Journal of Science & Technology, 20(2), 409–414.Google Scholar
  37. 37.
    Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501.Google Scholar
  38. 38.
    Prachayawarakorn, J., Sangnitidej, P., & Boonpasith, P. (2010). Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydrate Polymers, 81(2), 425–433.Google Scholar
  39. 39.
    Khalid, M., Ali, S., Abdullah, L., et al. (2006). Effect of MAPP as coupling agent on the mechanical properties of palm fiber empty fruit bunch and cellulose polypropylene biocomposites. International Journal of Engineering and Technology, 3(1), 79–84.Google Scholar
  40. 40.
    Kalapakdee, A., & Amornsakchai, T. (2014). Mechanical properties of preferentially aligned short pineapple leaf fiber reinforced thermoplastic elastomer: Effects of fiber content and matrix orientation. Polymer Testing, 37, 36–44.Google Scholar
  41. 41.
    Murty, V., & De, S. (1982). Short jute fiber reinforced rubber composites. Rubber Chemistry and Technology, 55(2), 287–308.Google Scholar
  42. 42.
    Coran, A., Boustany, K., & Hamed, P. (1974). Short-fiber-rubber composites: The properties of oriented cellulose-fiber-elastomer composites. Rubber Chemistry and Technology, 47(2), 396–410.Google Scholar
  43. 43.
    Lu, J. Z., Wu, Q., & Negulescu, I. I. (2005). Wood-fiber/high-density-polyethylene composites: coupling agent performance. Journal of Applied Polymer Science, 96(1), 93–102.Google Scholar
  44. 44.
    Mohanty, S., Verma, S. K., & Nayak, S. K. (2006). Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Composites Science and Technology, 66(3), 538–547.Google Scholar
  45. 45.
    Gassan, J., & Bledzki, A. K. (1997). The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 28(12), 1001–1005.Google Scholar
  46. 46.
    Rana, A., Mandal, A., Mitra, B., et al. (1998). Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. Journal of Applied Polymer Science, 69(2), 329–338.Google Scholar
  47. 47.
    Yang, H.-S., Wolcott, M. P., Kim, H.-S., et al. (2007). Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Composite Structures, 79(3), 369–375.Google Scholar
  48. 48.
    Siregar, J. P., Sapuan, S., Rahman, M., et al. (2010). The effect of alkali treatment on the mechanical properties of short pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Journal of Food, Agriculture and Environment, 8(2), 1103–1108.Google Scholar
  49. 49.
    Hashemi, W. F. S. A. J. (2011). Foundation of materials science and engineering (5th ed.). Singapore: McGraw-Hill Companies Inc.Google Scholar
  50. 50.
    Threepopnatkul, P., Kaerkitcha, N., & Athipongarporn, N. (2009). Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Composites Part B: Engineering, 40(7), 628–632.Google Scholar
  51. 51.
    Panyasart, K., Chaiyut, N., Amornsakchai, T., et al. (2014). Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia, 56, 406–413.Google Scholar
  52. 52.
    Sukumaran, K., Satyanarayana, K., Pillai, S., et al. (2001). Structure, physical and mechanical properties of plant fibers of Kerala. Metals Mater Process, 13(2/4), 121–136.Google Scholar
  53. 53.
    Karmarkar, A., Chauhan, S., Modak, J. M., et al. (2007). Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Composites Part A: Applied Science and Manufacturing, 38(2), 227–233.Google Scholar
  54. 54.
    Yang, H.-S., Kim, H.-J., Son, J., et al. (2004). Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63(3), 305–312.Google Scholar
  55. 55.
    Rana, A. K., Mandal, A., & Bandyopadhyay, S. (2003). Short jute fiber reinforced polypropylene composites: Effect of compatibiliser, impact modifier and fiber loading”. Composites Science and Technology, 63(6), 801–806.Google Scholar
  56. 56.
    Rowell, R. M. (2007). Challenges in biomass–thermoplastic composites. Journal of Polymers and the Environment, 15(4), 229–235.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Januar Parlaungan Siregar
    • 1
    Email author
  • Jamiluddin Jaafar
    • 1
  • Tezara Cionita
    • 2
  • Choo Chee Jie
    • 1
  • Dandi Bachtiar
    • 1
  • Mohd. Ruzaimi Mat Rejab
    • 1
  • Yuli Panca Asmara
    • 1
  1. 1.Structural Material and Degradation Focus Group, Faculty of Mechanical EngineeringUniversiti Malaysia PahangPekanMalaysia
  2. 2.Department of Mechanical Engineering, Faculty of Engineering and Quantity SurveyingINTI International UniversityNilaiMalaysia

Personalised recommendations