Current Sleep Medicine Reports

, Volume 4, Issue 3, pp 196–201 | Cite as

Cerebrovascular Regulation and Sleep Apnea

  • Behrouz JafariEmail author
Heart Disease and Sleep Disturbances (R Khayat, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Heart Disease and Sleep Disturbances


Purpose of Review

The brain relies on a constant blood flow to match nutrient delivery with the local metabolic demands. Cerebral blood flow (CBF) autoregulation is particularly important under hypoxic conditions such as obstructive sleep apnea (OSA) to prevent brain hypoxia. We aim to give a brief overview of cerebral blood flow regulation and evaluate the current evidence for cerebrovascular sensitivity to hypoxia, the capacity of cerebral arteries to respond to reduced oxygen supply during normal sleep and OSA.

Recent Findings

In clinical conditions such as intermittent hypoxia as well as untreated OSA, cerebrovascular system becomes less reactive to CO2 and impaired autoregulation, and makes the brain more susceptible to ischemic stroke.


Results from studies in patients with OSA indicate worse clinical outcome including higher chance of cerebrovascular events, impaired functional capacity and cognition. Early treatment of OSA with continuous positive airway pressure (CPAP), resulting in reversal of cerebral autoregulation.


Obstructive sleep apnea Sleep disordered breathing Cerebral blood flow Stroke Cerebral autoregulation 


Compliance with Ethical Standards

Conflict of Interest

Behrouz Jafari declares no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Willie CK, Smith KJ. Fuelling the exercising brain: a regulatory quagmire for lactate metabolism. J Physiol. 2011;589(Pt 4):779–80.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20(1):45–52.CrossRefPubMedGoogle Scholar
  3. 3.
    Harper RM, Frysinger RC, Marks JD, Zhang JX, Trelease RB. Cardiorespiratory control during sleep. Ann N Y Acad Sci. 1988;533:368–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Zoccoli G, Walker AM, Lenzi P, Franzini C. The cerebral circulation during sleep: regulation mechanisms and functional implications. Sleep Med Rev. 2002;6(6):443–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Ainslie PN, Poulin MJ. Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J Appl Physiol. 2004;97(1):149–59.CrossRefPubMedGoogle Scholar
  6. 6.
    Vantanajal JS, Ashmead JC, Anderson TJ, Hepple RT, Poulin MJ. Differential sensitivities of cerebral and brachial blood flow to hypercapnia in humans. J Appl Physiol. 2007;102(1):87–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Foster GE, Hanly PJ, Ostrowski M, Poulin MJ. Effects of continuous positive airway pressure on cerebral vascular response to hypoxia in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2007;175(7):720–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Reichmuth KJ, Dopp JM, Barczi SR, Skatrud JB, Wojdyla P, Don Hayes J, et al. Impaired vascular regulation in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2009;180(11):1143–50.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cheyne JA. A case of apoplexy in which the fleshy part of the heart was converted into fat. Dublin Hosp Rep. 1818;2:216–22.Google Scholar
  10. 10.
    Romero-Corral A, Somers VK, Pellikka PA, Olson EJ, Bailey KR, Korinek J, et al. Decreased right and left ventricular myocardial performance in obstructive sleep apnea. Chest. 2007;132(6):1863–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College Of Cardiology Foundation scientific statement from the American Heart Association Council for high blood pressure research professional education committee, council on clinical cardiology, stroke council, and council on cardiovascular nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on sleep disorders research (National Institutes of Health). Circulation. 2008;118(10):1080–111.CrossRefPubMedGoogle Scholar
  12. 12.
    Marshall NS, Wong KK, Cullen SR, Knuiman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton health study cohort. J Clin Sleep Med. 2014;10(4):355–62.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Tsai YW, Yang YR, Wang PS, Wang RY. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats. PLoS One. 2011;6(8):e24001.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1473–95.CrossRefPubMedGoogle Scholar
  15. 15.
    Filosa JA, Iddings JA. Astrocyte regulation of cerebral vascular tone. Am J Physiol Heart Circ Physiol. 2013;305(5):H609–19.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 2006;86(3):1009–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5:347–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10:1369–76.CrossRefPubMedGoogle Scholar
  19. 19.
    Murkin JM. Cerebral autoregulation: the role of CO2 in metabolic homeostasis. Semin Cardiothorac Vasc Anesth. 2007;11(4):269–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab. 2008;7(6):476–84.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013;304(12):H1598–614.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ameriso SF, Mohler JG, Suarez M, Fisher M. Morning reduction of cerebral vasomotor reactivity. Neurology. 1994;44(10):1907–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Placidi F, Diomedi M, Cupini LM, Bernardi G, Silvestrini M. Impairment of daytime cerebrovascular reactivity in patients with obstructive sleep apnoea syndrome. J Sleep Res. 1998;7(4):288–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation. 1976;53(4):720–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Hamar J, Kovach AG, Reivich M, Nyary I, Durity F. Effect of phenoxybenzamine on cerebral blood flow and metabolism in the baboon during hemorrhagic shock. Stroke. 1979;10(4):401–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Overgaard J, Skinhoj E. A paradoxical cerebral hemodynamic effect of hydralazine. Stroke. 1975;6(4):402–10.CrossRefPubMedGoogle Scholar
  27. 27.
    Henriksen L, Paulson OB. The effects of sodium nitroprusside on cerebral blood flow and cerebral venous blood gases in man. Acta Medica Scand Suppl. 1983;678:91–6.Google Scholar
  28. 28.
    Johnson PC. Autoregulation of blood flow. Circ Res. 1986;59(5):483–95.CrossRefPubMedGoogle Scholar
  29. 29.
    FM F, DD H. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998;78(1):53–97.CrossRefGoogle Scholar
  30. 30.
    Van de Borne P, Nguyen H, Biston P, Linkowski P, Degaute JP. Effects of wake and sleep stages on the 24-h autonomic control of blood pressure and heart rate in recumbent men. Am J Phys. 1994;266(2 Pt 2):H548–54.Google Scholar
  31. 31.
    Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–904.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Narkiewicz K, Montano N, Cogliati C, van de Borne PJ, Dyken ME, Somers VK. Altered cardiovascular variability in obstructive sleep apnea. Circulation. 1998;98(11):1071–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Elliott WJ. Circadian variation in the timing of stroke onset: a meta-analysis. Stroke. 1998;29(5):992–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Kario K, Matsuo T, Kobayashi H, Imiya M, Matsuo M, Shimada K. Nocturnal fall of blood pressure and silent cerebrovascular damage in elderly hypertensive patients. Advanced silent cerebrovascular damage in extreme dippers. Hypertension. 1996;27(1):130–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Burgess HJ, Trinder J, Kim Y, Luke D. Sleep and circadian influences on cardiac autonomic nervous system activity. Am J Phys. 1997;273(4 Pt 2):H1761–8.Google Scholar
  36. 36.
    Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med. 1993;328(5):303–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Dodt C, Breckling U, Derad I, Fehm HL, Born J. Plasma epinephrine and norepinephrine concentrations of healthy humans associated with nighttime sleep and morning arousal. Hypertension. 1997;30(1 Pt 1):71–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Linsell CR, Lightman SL, Mullen PE, Brown MJ, Causon RC. Circadian rhythms of epinephrine and norepinephrine in man. J Clin Endocrinol Metab. 1985;60(6):1210–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Davies RJ, Belt PJ, Roberts SJ, Ali NJ, Stradling JR. Arterial blood pressure responses to graded transient arousal from sleep in normal humans. J Appl Physiol. 1993;74(3):1123–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Sforza E, Jouny C, Ibanez V. Cardiac activation during arousal in humans: further evidence for hierarchy in the arousal response. Clin Neurophysiol. 2000;111(9):1611–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Lombardi F. Chaos theory, heart rate variability, and arrhythmic mortality. Circulation. 2000;101(1):8–10.CrossRefPubMedGoogle Scholar
  42. 42.
    Kerkhof GA, Van Dongen HP, Bobbert AC. Absence of endogenous circadian rhythmicity in blood pressure? Am J Hypertens. 1998;11(3 Pt 1):373–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Nowlin JB, Troyer WG Jr, Collins WS, Silverman G, Nichols CR, McIntosh HD, et al. The association of nocturnal angina pectoris with dreaming. Ann Intern Med. 1965;63(6):1040–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Reichmuth KJ, Dopp JM, Barczi SR, Skatrud JB, Wojdyla P, Hayes D Jr, et al. Impaired vascular regulation in patients with obstructive sleep apnea: effects of continuous positive airway pressure treatment. Am J Respir Crit Care Med. 2009;180(11):1143–50.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Foster GE, Hanly PJ, Ostrowski M, Poulin MJ. Effects of continuous positive airway pressure on cerebral vascular response to hypoxia in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2007;175(7):720–5.CrossRefPubMedGoogle Scholar
  46. 46.
    •• Jackman KA, Zhou P, Faraco G, Peixoto PM, Coleman C, Voss HU, et al. Dichotomous effects of chronic intermittent hypoxia on focal cerebral ischemic injury. Stroke. 2014;45(5):1460–7. This study suggest chronic mild intermittent hypoxia can elicit ischemic preconditionioning and have neuroprotective effect. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.CrossRefPubMedGoogle Scholar
  48. 48.
    Siebler M, Nachtmann A. Cerebral hemodynamics in obstructive sleep apnea. Chest. 1993;103(4):1118–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Balfors EM, Franklin KA. Impairment of cerebral perfusion during obstructive sleep apneas. Am J Respir Crit Care Med. 1994;150(6 Pt 1):1587–91.CrossRefPubMedGoogle Scholar
  50. 50.
    Hajak G, Klingelhöfer J, Schulz-Varszegi M, Sander D, Rüther E. Sleep apnea syndrome and cerebral hemodynamics. Chest. 1996;110(3):670–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Siebler M, Daffertshofer M, Hennerici M, Freund HJ. Cerebral blood flow velocity alterations during obstructive sleep apnea syndrome. Neurology. 1990;40(9):1461–2.CrossRefPubMedGoogle Scholar
  52. 52.
    Urbano F, Roux F, Schindler J, Mohsenin V. Impaired cerebral autoregulation in obstructive sleep apnea. J Appl Physiol (1985). 2008;105(6):1852–7.CrossRefGoogle Scholar
  53. 53.
    •• Waltz X, Beaudin AE, Hanly PJ, Mitsis GD, Poulin MJ. Effects of continuous positive airway pressure and isocapnic-hypoxia on cerebral autoregulation in patients with obstructive sleep apnoea. J Physiol. 2016;594(23):7089–104. This study suggest that sympathetic overactivity may be responsible for cerebral dysregulation in more severe forms of OSA. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Foster GE, Hanly PJ, Ostrowski M, Poulin MJ. Ventilatory and cerebrovascular responses to hypercapnia in patients with obstructive sleep apnoea: effect of CPAP therapy. Respir Physiol Neurobiol. 2009;165(1):73–81.CrossRefPubMedGoogle Scholar
  55. 55.
    Hartmann SE, Leigh R, Poulin MJ. Cerebrovascular responses to submaximal exercise in women with COPD. BMC Pulm Med. 2014;14(1):99.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Alexandrov AV, Nguyen HT, Rubiera M, Alexandrov AW, Zhao L, Heliopoulos I, et al. Prevalence and risk factors associated with reversed Robin Hood syndrome in acute ischemic stroke. Stroke. 2009;40(8):2738–42.CrossRefPubMedGoogle Scholar
  57. 57.
    Metzger A, Rees J, Kwon Y, Matsuura T, McKnite S, Lurie KG. Intrathoracic pressure regulation improves cerebral perfusion and cerebral blood flow in a porcine model of brain injury. Shock (Augusta, Ga). 2015;44(Suppl 1):96–102.CrossRefGoogle Scholar
  58. 58.
    • Hayen A, Herigstad M, Kelly M, Okell TW, Murphy K, Wise RG, et al. The effects of altered intrathoracic pressure on resting cerebral blood flow and its response to visual stimulation. NeuroImage. 2013;66:479–88. This study suggest altered intrathoracic pressures, whether induced experimentally, therapeutically or through a disease process, have possible significant effects on CBF. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Beelke M, Angeli S, Del Sette M, Gandolfo C, Cabano ME, Canovaro P, et al. Prevalence of patent foramen ovale in subjects with obstructive sleep apnea: a transcranial Doppler ultrasound study. Sleep Med. 2003;4(3):219–23.CrossRefPubMedGoogle Scholar
  60. 60.
    Mojadidi MK, Bokhoor PI, Gevorgyan R, Noureddin N, MacLellan WC, Wen E, et al. Sleep apnea in patients with and without a right-to-left shunt. J Clin Sleep Med. 2015;11(11):1299–304.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Carlson JT, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin BG. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest. 1993;103(6):1763–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Carlson JT, Hedner JA, Sellgren J, Elam M, Wallin BG. Depressed baroreflex sensitivity in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 1996;154(5):1490–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Schagatay E, Andersson JP, Hallen M, Palsson B. Selected contribution: role of spleen emptying in prolonging apneas in humans. J Appl Physiol (1985). 2001;90(4):1623–9. discussion 06CrossRefGoogle Scholar
  64. 64.
    • Vigetun-Haughey H, Appelberg J, Forsberg T, Kaldensjo M, Schagatay E. Voluntary apnea evokes diving responses in obstructive sleep apnea patients. Eur J Appl Physiol. 2015;115(5):1029–36. This study represent an important mechanism to match temporal brain oxygen demand. Sympathetic overactivity also causes spleen contraction, results in autotransfusion of red blood cells and improve oxygen transport to the vital organs. CrossRefPubMedGoogle Scholar
  65. 65.
    Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med. 2005;353(19):2034–41.CrossRefPubMedGoogle Scholar
  66. 66.
    Jennum P, Borgesen SE. Intracranial pressure and obstructive sleep apnea. Chest. 1989;95(2):279–83.CrossRefPubMedGoogle Scholar
  67. 67.
    Klingelhofer J, Hajak G, Sander D, Schulz-Varszegi M, Ruther E, Conrad B. Assessment of intracranial hemodynamics in sleep apnea syndrome. Stroke. 1992;23(10):1427–33.CrossRefPubMedGoogle Scholar
  68. 68.
    Culebras A. Sleep and stroke. Semin Neurol. 2009;29(4):438–45.CrossRefPubMedGoogle Scholar
  69. 69.
    Faraci FM. Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol. 2011;300(5):H1566–82.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cho JG, Witting PK, Verma M, Wu BJ, Shanu A, Kairaitis K, et al. Tissue vibration induces carotid artery endothelial dysfunction: a mechanism linking snoring and carotid atherosclerosis? Sleep. 2011;34(6):751–7.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lee SA, Amis TC, Byth K, Larcos G, Kairaitis K, Robinson TD, et al. Heavy snoring as a cause of carotid artery atherosclerosis. Sleep. 2008;31(9):1207–13.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Yaggi H, Mohsenin V. Obstructive sleep apnoea and stroke. Lancet Neurol. 2004;3(6):333–42.CrossRefPubMedGoogle Scholar
  73. 73.
    Kaneko Y, Hajek VE, Zivanovic V, Raboud J, Bradley TD. Relationship of sleep apnea to functional capacity and length of hospitalization following stroke. Sleep. 2003;26(3):293–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Decary A, Rouleau I, Montplaisir J. Cognitive deficits associated with sleep apnea syndrome: a proposed neuropsychological test battery. Sleep. 2000;23(3):369–81.CrossRefPubMedGoogle Scholar
  75. 75.
    Good DC, Henkle JQ, Gelber D, Welsh J, Verhulst S. Sleep-disordered breathing and poor functional outcome after stroke. Stroke. 1996;27(2):252–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Sandberg O, Franklin KA, Bucht G, Eriksson S, Gustafson Y. Nasal continuous positive airway pressure in stroke patients with sleep apnoea: a randomized treatment study. Eur Respir J. 2001;18(4):630–4.CrossRefPubMedGoogle Scholar
  77. 77.
    Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328(17):1230–5.CrossRefPubMedGoogle Scholar
  78. 78.
    Harbison J, Ford GA, James OF, Gibson GJ. Sleep-disordered breathing following acute stroke. QJM. 2002;95(11):741–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Iranzo A, Santamaria J, Berenguer J, Sanchez M, Chamorro A. Prevalence and clinical importance of sleep apnea in the first night after cerebral infarction. Neurology. 2002;58(6):911–6.CrossRefPubMedGoogle Scholar
  80. 80.
    Turkington PM. Effect of upper airway obstruction on blood pressure variability after stroke.[see comment]. Clin Sci. 2004;107(1):27–8.CrossRefGoogle Scholar
  81. 81.
    Dyken ME, Somers VK, Yamada T, Ren ZY, Zimmerman MB. Investigating the relationship between stroke and obstructive sleep apnea. Stroke. 1996;27(3):401–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Sahlin C, Sandberg O, Gustafson Y, Bucht G, Carlberg B, Stenlund H, et al. Obstructive sleep apnea is a risk factor for death in patients with stroke: a 10-year follow-up. Arch Intern Med. 2008;168(3):297–301.CrossRefPubMedGoogle Scholar
  83. 83.
    Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365(9464):1046–53.CrossRefPubMedGoogle Scholar
  84. 84.
    Gami AS, Howard DE, Olson EJ, Somers VK. Day-night pattern of sudden death in obstructive sleep apnea. N Engl J Med. 2005;352(12):1206–14.CrossRefPubMedGoogle Scholar
  85. 85.
    Martinez-Garcia MA, Soler-Cataluna JJ, Ejarque-Martinez L, Soriano Y, Roman-Sanchez P, Illa FB, et al. Continuous positive airway pressure treatment reduces mortality in patients with ischemic stroke and obstructive sleep apnea: a 5-year follow-up study. Am J Respir Crit Care Med. 2009;180(1):36–41.CrossRefPubMedGoogle Scholar
  86. 86.
    Parra O, Arboix A, Montserrat JM, Quinto L, Bechich S, Garcia-Eroles L. Sleep-related breathing disorders: impact on mortality of cerebrovascular disease. Eur Respir J. 2004;24(2):267–72.CrossRefPubMedGoogle Scholar
  87. 87.
    Turkington PM, Bamford J, Wanklyn P, Elliott MW. Effect of upper airway obstruction on blood pressure variability after stroke. Clin Sci (Lond). 2004;107(1):75–9.CrossRefGoogle Scholar
  88. 88.
    Becker H, Jerrentrup A, Ploch T, Grote L, Penzel T, Sullivan C, et al. Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea. Circulation. 2003;107:68–73.CrossRefPubMedGoogle Scholar
  89. 89.
    Wessendorf TE, Wang YM, Thilmann AF, Sorgenfrei U, Konietzko N, Teschler H. Treatment of obstructive sleep apnoea with nasal continuous positive airway pressure in stroke. Eur Respir J. 2001;18(4):623–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Martinez-Garcia MA, Galiano-Blancart R, Roman-Sanchez P, Soler-Cataluna JJ, Cabero-Salt L, Salcedo-Maiques E. Continuous positive airway pressure treatment in sleep apnea prevents new vascular events after ischemic stroke. Chest. 2005;128(4):2123–9.CrossRefPubMedGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Section of Pulmonary, Critical Care and Sleep MedicineUniversity of California-Irvine, School of MedicineIrvineUSA
  2. 2.VA Long Beach Healthcare SystemLong BeachUSA

Personalised recommendations