Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lymphoma in Sjögren’s Syndrome: Predictors and Therapeutic Options

  • 21 Accesses

Abstract

Purpose of review

Sjögren’s syndrome (SS) is a chronic systemic disorder of autoimmune origin characterized by impaired secretory function of the exocrine glands and a high susceptibility for non-Hodgkin’s lymphoma development. The aim of the present review is to summarize the main clinical and molecular contributors of lymphoma development in the setting of SS and discuss current therapeutic options.

Recent findings

Male sex, earlier SS onset, systemic features including salivary gland enlargement, purpura, lymphadenopathy, Raynaud’s phenomenon, tongue atrophy, autoantibody production, depressed C4 complement levels, monoclonal gammopathy, and cryoglobulinemia are the main features denoting a high-risk SS phenotype for the practicing clinician. Additional molecular markers involving innate immune pathways, B cell activation, and epigenetic alterations have been recently revealed. For the treatment of SS-related lymphoma, the basic principles for treatment of lymphomas in general are applied.

Summary

Identification of predictors for lymphoma development in the setting of SS is of crucial importance for a prompt diagnosis and early therapeutic intervention. Moreover, discovery of novel genetic and epigenetic contributors through international collaborative efforts will allow a better understanding of underlying molecular pathways and establishment of tailored treatment approaches for these patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References and Recommended Reading

  1. 1.

    Mavragani CP, Moutsopoulos HM. Sjögren’s syndrome. Annu Rev Pathol. 2014;9:273–85.

  2. 2.

    Mavragani CP, Moutsopoulos HM. The geoepidemiology of Sjögren’s syndrome. Autoimmun Rev. 2010;9:A305–10.

  3. 3.

    Mavragani CP, Moutsopoulos HM. Primary versus Secondary Sjögren Syndrome: Is It Time To Reconsider These Terms? J Rheumatol. 2019;46:665–6.

  4. 4.

    Mavragani CP, Moutsopoulos HM. Sjögren syndrome. CMAJ. 2014;186:E579–86.

  5. 5.

    Zintzaras E, Voulgarelis M, Moutsopoulos HM. The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med. 2005;165:2337–44.

  6. 6.

    • Nocturne G, Pontarini E, Bombardieri M, Mariette X (2019) Lymphomas complicating primary Sjögren’s syndrome: from autoimmunity to lymphoma. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/kez052 A stimulating review on pathophysiological mechanisms of lymphomagenesis in the setting of SS.

  7. 7.

    Papageorgiou A, Ziogas DC, Mavragani CP, Zintzaras E, Tzioufas AG, Moutsopoulos HM, et al. Predicting the outcome of Sjogren’s syndrome-associated non-hodgkin’s lymphoma patients. PLoS One. 2015;10:e0116189.

  8. 8.

    Voulgarelis M, Dafni UG, Isenberg DA, Moutsopoulos HM. Malignant lymphoma in primary Sjögren’s syndrome: a multicenter, retrospective, clinical study by the European Concerted Action on Sjögren’s Syndrome. Arthritis Rheum. 1999;42:1765–72.

  9. 9.

    Anderson LA, Gadalla S, Morton LM, Landgren O, Pfeiffer R, Warren JL, et al. Population-based study of autoimmune conditions and the risk of specific lymphoid malignancies. Int J Cancer. 2009;125:398–405.

  10. 10.

    Anquetil C, Hachulla E, Machuron F, et al. Is early-onset primary Sjögren’s syndrome a worse prognosis form of the disease? Rheumatology (Oxford). 2019;58:1163–7.

  11. 11.

    Ramos-Casals M, Cervera R, Font J, García-Carrasco M, Espinosa G, Reino S, et al. Young onset of primary Sjögren’s syndrome: clinical and immunological characteristics. Lupus. 1998;7:202–6.

  12. 12.

    •• Retamozo S, Brito-Zerón P, Ramos-Casals M (2019) Prognostic markers of lymphoma development in primary Sjögren syndrome. Lupus 28:923–936 An excellent systematic review on clinical predictors in the setting of SS associated lymphoma.

  13. 13.

    Brito-Zerón P, Acar-Denizli N, Ng W-F, et al. How immunological profile drives clinical phenotype of primary Sjögren’s syndrome at diagnosis: analysis of 10,500 patients (Sjögren Big Data Project). Clin Exp Rheumatol. 2018;36(Suppl 112):102–12.

  14. 14.

    How Does a Younger Age at the Onset of Sjögren’s Syndrome (pSS) Influence the Clinical Presentation and the Clinical Course of the Disease? ACR Meeting Abstracts.

  15. 15.

    Argyropoulou O, Goules A, Zampeli E, Mavromati M, Mavragani C, Skopouli F, et al. FRI0222 ANALYSIS OF CLINICAL AND SEROLOGICAL PICTURE OF PATIENTS WITH PRIMARY SJÖGREN’S SYNDROMEAND AN EARLY DISEASE ONSET AT AGE BEFORE 35 YEARS. Ann Rheum Dis. 2019;78:790–1.

  16. 16.

    • Fragkioudaki S, Mavragani CP, Moutsopoulos HM (2016) Predicting the risk for lymphoma development in Sjogren syndrome: An easy tool for clinical use. Medicine (Baltimore) 95:e3766 A predictive tool for SS related lymphoma risk for the practicing clinician based on 7 independent clinical factors.

  17. 17.

    Skopouli FN, Dafni U, Ioannidis JP, Moutsopoulos HM. Clinical evolution, and morbidity and mortality of primary Sjögren’s syndrome. Semin Arthritis Rheum. 2000;29:296–304.

  18. 18.

    Nocturne G, Virone A, Ng W-F, et al. (2016) Rheumatoid Factor and Disease Activity Are Independent Predictors of Lymphoma in Primary Sjögren’s Syndrome. Arthritis & Rheumatology (Hoboken, NJ) 68:977–985.

  19. 19.

    Theander E, Henriksson G, Ljungberg O, Mandl T, Manthorpe R, Jacobsson LTH. Lymphoma and other malignancies in primary Sjögren’s syndrome: a cohort study on cancer incidence and lymphoma predictors. Ann Rheum Dis. 2006;65:796–803.

  20. 20.

    Solans-Laqué R, López-Hernandez A, Bosch-Gil JA, Palacios A, Campillo M, Vilardell-Tarres M. Risk, predictors, and clinical characteristics of lymphoma development in primary Sjögren’s syndrome. Semin Arthritis Rheum. 2011;41:415–23.

  21. 21.

    Johnsen SJ, Brun JG, Gøransson LG, Småstuen MC, Johannesen TB, Haldorsen K, et al. Risk of non-Hodgkin’s lymphoma in primary Sjögren’s syndrome: a population-based study. Arthritis Care Res. 2013;65:816–21.

  22. 22.

    Brito-Zerón P, Ramos-Casals M, Bove A, Sentis J, Font J. Predicting adverse outcomes in primary Sjögren’s syndrome: identification of prognostic factors. Rheumatology (Oxford). 2007;46:1359–62.

  23. 23.

    Sène D, Ismael S, Forien M, Charlotte F, Kaci R, Cacoub P, Diallo A, Dieudé P, Lioté F (2018) Ectopic Germinal Center-Like Structures in Minor Salivary Gland Biopsy Tissue Predict Lymphoma Occurrence in Patients With Primary Sjögren’s Syndrome. Arthritis & Rheumatology (Hoboken, NJ) 70:1481–1488.

  24. 24.

    Ansell P, Simpson J, Lightfoot T, Smith A, Kane E, Howell D, et al. Non-Hodgkin lymphoma and autoimmunity: does gender matter? Int J Cancer. 2011;129:460–6.

  25. 25.

    Fallah M, Liu X, Ji J, Försti A, Sundquist K, Hemminki K. Autoimmune diseases associated with non-Hodgkin lymphoma: a nationwide cohort study. Ann Oncol. 2014;25:2025–30.

  26. 26.

    Gondran G, Fauchais A, Lambert M, et al. Primary Sjogren’s syndrome in men. Scand J Rheumatol. 2008;37:300–5.

  27. 27.

    Ramírez Sepúlveda JI, Kvarnström M, Eriksson P, et al. Long-term follow-up in primary Sjögren’s syndrome reveals differences in clinical presentation between female and male patients. Biol Sex Differ. 2017;8:25.

  28. 28.

    Anaya JM, Liu GT, D’Souza E, Ogawa N, Luan X, Talal N. Primary Sjögren’s syndrome in men. Ann Rheum Dis. 1995;54:748–51.

  29. 29.

    Baldini C, Pepe P, Luciano N, Ferro F, Talarico R, Grossi S, et al. A clinical prediction rule for lymphoma development in primary Sjögren’s syndrome. J Rheumatol. 2012;39:804–8.

  30. 30.

    Brito-Zerón P, Kostov B, Fraile G, et al. Characterization and risk estimate of cancer in patients with primary Sjögren syndrome. J Hematol Oncol. 2017;10:90.

  31. 31.

    Sutcliffe N, Inanc M, Speight P, Isenberg D. Predictors of lymphoma development in primary Sjögren’s syndrome. Semin Arthritis Rheum. 1998;28:80–7.

  32. 32.

    Ioannidis JPA, Vassiliou VA, Moutsopoulos HM. Long-term risk of mortality and lymphoproliferative disease and predictive classification of primary Sjögren’s syndrome. Arthritis Rheum. 2002;46:741–7.

  33. 33.

    Risselada AP, Kruize AA, Bijlsma JWJ. Clinical features distinguishing lymphoma development in primary Sjögren’s Syndrome--a retrospective cohort study. Semin Arthritis Rheum. 2013;43:171–7.

  34. 34.

    De Vita S, Gandolfo S, Zandonella Callegher S, Zabotti A, Quartuccio L. The evaluation of disease activity in Sjögren’s syndrome based on the degree of MALT involvement: glandular swelling and cryoglobulinaemia compared to ESSDAI in a cohort study. Clin Exp Rheumatol. 2018;36(Suppl 112):150–6.

  35. 35.

    Kassan SS, Thomas TL, Moutsopoulos HM, Hoover R, Kimberly RP, Budman DR, et al. Increased risk of lymphoma in sicca syndrome. Ann Intern Med. 1978;89:888–92.

  36. 36.

    Quartuccio L, Isola M, Baldini C, et al. Biomarkers of lymphoma in Sjögren’s syndrome and evaluation of the lymphoma risk in prelymphomatous conditions: results of a multicenter study. J Autoimmun. 2014;51:75–80.

  37. 37.

    Voulgarelis M, Ziakas PD, Papageorgiou A, Baimpa E, Tzioufas AG, Moutsopoulos HM. Prognosis and outcome of non-Hodgkin lymphoma in primary Sjögren syndrome. Medicine (Baltimore). 2012;91:1–9.

  38. 38.

    Ramos-Casals M, Anaya J-M, García-Carrasco M, Rosas J, Bové A, Claver G, et al. Cutaneous vasculitis in primary Sjögren syndrome: classification and clinical significance of 52 patients. Medicine (Baltimore). 2004;83:96–106.

  39. 39.

    Retamozo S, Gheitasi H, Quartuccio L, et al. Cryoglobulinaemic vasculitis at diagnosis predicts mortality in primary Sjögren syndrome: analysis of 515 patients. Rheumatology (Oxford). 2016;55:1443–51.

  40. 40.

    Sène D, Jallouli M, Lefaucheur J-P, et al. Peripheral neuropathies associated with primary Sjögren syndrome: immunologic profiles of nonataxic sensory neuropathy and sensorimotor neuropathy. Medicine (Baltimore). 2011;90:133–8.

  41. 41.

    Pavlakis PP, Alexopoulos H, Kosmidis ML, Stamboulis E, Routsias JG, Tzartos SJ, et al. Peripheral neuropathies in Sjogren syndrome: a new reappraisal. J Neurol Neurosurg Psychiatry. 2011;82:798–802.

  42. 42.

    García-Carrasco M, Sisó A, Ramos-Casals M, Rosas J, de la Red G, Gil V, et al. Raynaud’s phenomenon in primary Sjögren’s syndrome. Prevalence and clinical characteristics in a series of 320 patients. J Rheumatol. 2002;29:726–30.

  43. 43.

    Raynaud’s Phenomenon and African American Race Are Independently Associated With Non-Hodgkin’s Lymphoma In Sjogrens Syndrome Patients: Findings From a United States National Study. ACR Meeting Abstracts.

  44. 44.

    • Zampeli E, Kalogirou E-M, Piperi E, Mavragani CP, Moutsopoulos HM (2018) Tongue Atrophy in Sjögren Syndrome Patients with Mucosa-associated Lymphoid Tissue Lymphoma: Autoimmune Epithelitis beyond the Epithelial Cells of Salivary Glands? J Rheumatol 45:1565–1571 A recent report revealing tongue atrophy as a novel clinical predictor for SS- related MALT lymphoma.

  45. 45.

    Brito-Zerón P, Kostov B, Solans R, et al. Systemic activity and mortality in primary Sjögren syndrome: predicting survival using the EULAR-SS Disease Activity Index (ESSDAI) in 1045 patients. Ann Rheum Dis. 2016;75:348–55.

  46. 46.

    Chisholm DM, Mason DK. Labial salivary gland biopsy in Sjögren’s disease. J Clin Pathol. 1968;21:656–60.

  47. 47.

    Carubbi F, Alunno A, Cipriani P, et al. A retrospective, multicenter study evaluating the prognostic value of minor salivary gland histology in a large cohort of patients with primary Sjögren’s syndrome. Lupus. 2015;24:315–20.

  48. 48.

    Risselada AP, de Hair M, Kruize AA, Bijlsma JWJ, van Roon JAG. Lymphocytic focus score as a prognostic tool. Ann Rheum Dis. 2015;74:e31.

  49. 49.

    Risselada AP, Kruize AA, Goldschmeding R, Lafeber FPJG, Bijlsma JWJ, van Roon JAG. The prognostic value of routinely performed minor salivary gland assessments in primary Sjögren’s syndrome. Ann Rheum Dis. 2014;73:1537–40.

  50. 50.

    Falini B, Agostinelli C, Bigerna B, et al. IRTA1 is selectively expressed in nodal and extranodal marginal zone lymphomas. Histopathology. 2012;61:930–41.

  51. 51.

    Haacke EA, Bootsma H, Spijkervet FKL, Visser A, Vissink A, Kluin PM, et al. FcRL4+ B-cells in salivary glands of primary Sjögren’s syndrome patients. J Autoimmun. 2017;81:90–8.

  52. 52.

    Hatzivassiliou G, Miller I, Takizawa J, et al. IRTA1 and IRTA2, novel immunoglobulin superfamily receptors expressed in B cells and involved in chromosome 1q21 abnormalities in B cell malignancy. Immunity. 2001;14:277–89.

  53. 53.

    Amara K, Clay E, Yeo L, et al. B cells expressing the IgA receptor FcRL4 participate in the autoimmune response in patients with rheumatoid arthritis. J Autoimmun. 2017;81:34–43.

  54. 54.

    Salomonsson S, Jonsson MV, Skarstein K, Brokstad KA, Hjelmström P, Wahren-Herlenius M, et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjögren’s syndrome. Arthritis Rheum. 2003;48:3187–201.

  55. 55.

    Brito-Zerón P, Retamozo S, Ramos-Casals M. Phenotyping Sjögren’s syndrome: towards a personalized management of the disease. Clin Exp Rheumatol. 2018;36(Suppl 112):198–209.

  56. 56.

    Theander E, Vasaitis L, Baecklund E, Nordmark G, Warfvinge G, Liedholm R, et al. Lymphoid organization in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjögren’s syndrome. Ann Rheum Dis. 2011;70:1363–8.

  57. 57.

    Johnsen SJ, Berget E, Jonsson MV, Helgeland L, Omdal R, Jonsson R. Evaluation of germinal center-like structures and B cell clonality in patients with primary Sjögren syndrome with and without lymphoma. J Rheumatol. 2014;41:2214–22.

  58. 58.

    Haacke EA, van der Vegt B, Vissink A, Spijkervet FKL, Bootsma H, Kroese FGM. Germinal centres in diagnostic labial gland biopsies of patients with primary Sjögren’s syndrome are not predictive for parotid MALT lymphoma development. Ann Rheum Dis. 2017;76:1781–4.

  59. 59.

    Barone F, Bombardieri M, Rosado MM, Morgan PR, Challacombe SJ, De Vita S, et al. CXCL13, CCL21, and CXCL12 expression in salivary glands of patients with Sjogren’s syndrome and MALT lymphoma: association with reactive and malignant areas of lymphoid organization. J Immunol. 2008;180:5130–40.

  60. 60.

    Bombardieri M, Barone F, Humby F, et al. Activation-induced cytidine deaminase expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjögren’s syndrome. J Immunol. 2007;179:4929–38.

  61. 61.

    Mavragani C, Kirou K, Nezos A, Seshan SV, Wild T, Wahl SM, et al. Thu0228 Expression of Apobec Family Members as Regulators of Endogenous Retroelements and Malignancy in Systemic Lupus Erythematosus and Sjögren’s Syndrome. Ann Rheum Dis. 2019;78:392–2.

  62. 62.

    Nezos A, Gravani F, Tassidou A, Kapsogeorgou EK, Voulgarelis M, Koutsilieris M, et al. Type I and II interferon signatures in Sjogren’s syndrome pathogenesis: Contributions in distinct clinical phenotypes and Sjogren’s related lymphomagenesis. J Autoimmun. 2015;63:47–58.

  63. 63.

    Manoussakis MN, Boiu S, Korkolopoulou P, Kapsogeorgou EK, Kavantzas N, Ziakas P, et al. Rates of infiltration by macrophages and dendritic cells and expression of interleukin-18 and interleukin-12 in the chronic inflammatory lesions of Sjögren’s syndrome: correlation with certain features of immune hyperactivity and factors associated with high risk of lymphoma development. Arthritis Rheum. 2007;56:3977–88.

  64. 64.

    •• Vakrakou AG, Boiu S, Ziakas PD, Xingi E, Boleti H, Manoussakis MN (2018) Systemic activation of NLRP3 inflammasome in patients with severe primary Sjögren’s syndrome fueled by inflammagenic DNA accumulations. J Autoimmun 91:23–33 Novel findings regarding the role of inflammasome in SS-related lymphomagenesis.

  65. 65.

    Johnsen SJ, Gudlaugsson E, Skaland I, Janssen E a. M, Jonsson MV, Helgeland L, Berget E, Jonsson R, Omdal R (2016) Low Protein A20 in Minor Salivary Glands is Associated with Lymphoma in Primary Sjögren’s Syndrome. Scand J Immunol 83:181–187.

  66. 66.

    Baldini C, Santini E, Rossi C, Donati V, Solini A. The P2X7 receptor-NLRP3 inflammasome complex predicts the development of non-Hodgkin’s lymphoma in Sjogren’s syndrome: a prospective, observational, single-centre study. J Intern Med. 2017;282:175–86.

  67. 67.

    Varricchi G, Pecoraro A, Marone G, Criscuolo G, Spadaro G, Genovese A, et al. Thymic Stromal Lymphopoietin Isoforms, Inflammatory Disorders, and Cancer. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.01595.

  68. 68.

    Gandolfo S, Fabro C, Bulfoni M, Doriguzzi Breatta E, Cesselli D, Di Loreto C, De Vita S. Serum Levels of Thymic Stromal Lymphopoietin: A Possible Novel Biomarker in Primary Sjögren’s Syndrome and Related Lymphoproliferation [abstract]. Arthritis Rheumatol. 2018; 70 (suppl 10). https://acrabstracts.org/abstract/serum-levels-of-thymic-stromallymphopoietin-a-possible-novel-biomarker-in-primary-sjogrens-syndrome-andrelated-lymphoproliferation/.

  69. 69.

    Hopp L, Nersisyan L, Löffler-Wirth H, Arakelyan A, Binder H. Epigenetic Heterogeneity of B Cell Lymphoma: Chromatin Modifiers. Genes (Basel). 2015;6:1076–112.

  70. 70.

    Mavragani CP, Nezos A, Sagalovskiy I, Seshan S, Kirou KA, Crow MK. Defective regulation of L1 endogenous retroelements in primary Sjogren’s syndrome and systemic lupus erythematosus: Role of methylating enzymes. J Autoimmun. 2018;88:75–82.

  71. 71.

    Chen MF, Zeng F, Qi L, Zu XB, Wang J, Liu LF, et al. Transforming growth factor-β1 induces epithelial-mesenchymal transition and increased expression of matrix metalloproteinase-16 via miR-200b downregulation in bladder cancer cells. Mol Med Rep. 2014;10:1549–54.

  72. 72.

    Cheng Y-X, Chen G-T, Chen C, Zhang Q-F, Pan F, Hu M, et al. MicroRNA-200b inhibits epithelial-mesenchymal transition and migration of cervical cancer cells by directly targeting RhoE. Mol Med Rep. 2016;13:3139–46.

  73. 73.

    •• Kapsogeorgou EK, Papageorgiou A, Protogerou AD, Voulgarelis M, Tzioufas AG (2018) Low miR200b-5p levels in minor salivary glands: a novel molecular marker predicting lymphoma development in patients with Sjögren’s syndrome. Ann Rheum Dis 77:1200–1207 A novel predictor for lymphoma development in SS.

  74. 74.

    Baimpa E, Dahabreh IJ, Voulgarelis M, Moutsopoulos HM. Hematologic manifestations and predictors of lymphoma development in primary Sjögren syndrome: clinical and pathophysiologic aspects. Medicine (Baltimore). 2009;88:284–93.

  75. 75.

    Shen L, Suresh L, Li H, Zhang C, Kumar V, Pankewycz O, et al. IL-14 alpha, the nexus for primary Sjögren’s disease in mice and humans. Clin Immunol. 2009;130:304–12.

  76. 76.

    Quartuccio L, Baldini C, Bartoloni E, et al. Anti-SSA/SSB-negative Sjögren’s syndrome shows a lower prevalence of lymphoproliferative manifestations, and a lower risk of lymphoma evolution. Autoimmun Rev. 2015;14:1019–22.

  77. 77.

    Baldini C, Mosca M, Della Rossa A, et al. Overlap of ACA-positive systemic sclerosis and Sjögren’s syndrome: a distinct clinical entity with mild organ involvement but at high risk of lymphoma. Clin Exp Rheumatol. 2013;31:272–80.

  78. 78.

    Ramos-Casals M, Brito-Zerón P, Yagüe J, Akasbi M, Bautista R, Ruano M, et al. Hypocomplementaemia as an immunological marker of morbidity and mortality in patients with primary Sjogren’s syndrome. Rheumatology (Oxford). 2005;44:89–94.

  79. 79.

    Quartuccio L, Salvin S, Fabris M, Maset M, Pontarini E, Isola M, et al. BLyS upregulation in Sjogren’s syndrome associated with lymphoproliferative disorders, higher ESSDAI score and B cell clonal expansion in the salivary glands. Rheumatology (Oxford). 2013;52:276–81.

  80. 80.

    •• Gandolfo S, Fabro C, Bulfoni M, Breatta ED, Cesselli D, Loreto CD, Vita SD (2019) Thu0217 Serum Thymic Stromal Lymphopoietin (tslp) as a Biomarker of B Cell Lymphoproliferation in Sjögren’s Syndrome. Annals of the Rheumatic Diseases 78:387–387 A promising novel biomarker in SS realted lymphoma.

  81. 81.

    Tobón GJ, Saraux A, Gottenberg J-E, et al. Role of Fms-like Tyrosine Kinase 3 Ligand as a Potential Biologic Marker of Lymphoma in Primary Sjögren’s Syndrome. Arthritis Rheum. 2013;65:3218–27.

  82. 82.

    Ray RJ, Furlonger C, Williams DE, Paige CJ. Characterization of thymic stromal-derived lymphopoietin (TSLP) in murine B cell development in vitro. Eur J Immunol. 1996;26:10–6.

  83. 83.

    Tobón GJ, Renaudineau Y, Hillion S, Cornec D, Devauchelle-Pensec V, Youinou P, et al. The Fms-like tyrosine kinase 3 ligand, a mediator of B cell survival, is also a marker of lymphoma in primary Sjögren’s syndrome. Arthritis Rheum. 2010;62:3447–56.

  84. 84.

    Nocturne G, Seror R, Fogel O, Belkhir R, Boudaoud S, Saraux A, et al. CXCL13 and CCL11 Serum Levels and Lymphoma and Disease Activity in Primary Sjögren’s Syndrome. Arthritis Rheum. 2015;67:3226–33.

  85. 85.

    Brito-Zerón P, Retamozo S, Gandía M, et al. Monoclonal gammopathy related to Sjögren syndrome: a key marker of disease prognosis and outcomes. J Autoimmun. 2012;39:43–8.

  86. 86.

    Tomi A-L, Belkhir R, Nocturne G, Desmoulins F, Berge E, Pavy S, et al. Brief Report: Monoclonal Gammopathy and Risk of Lymphoma and Multiple Myeloma in Patients With Primary Sjögren’s Syndrome. Arthritis Rheum. 2016;68:1245–50.

  87. 87.

    Kimman J, Bossuyt X, Blockmans D. Prognostic value of cryoglobulins, protein electrophoresis, and serum immunoglobulins for lymphoma development in patients with Sjögren’s syndrome. A retrospective cohort study. Acta Clin Belg. 2018;73:169–81.

  88. 88.

    Gottenberg J-E, Seror R, Miceli-Richard C, et al. Serum levels of beta2-microglobulin and free light chains of immunoglobulins are associated with systemic disease activity in primary Sjögren’s syndrome. Data at enrollment in the prospective ASSESS cohort. PLoS ONE. 2013;8:e59868.

  89. 89.

    Kotsifaki E, Nezos A, Psarrou A, Garantziotis P, Koutsilieris M, Mavragani C. Ab0183 the Role of the Phospholipase Lp-Pla2 Activity in Sjogren’s Syndrome Related Lymphomagenesis: A New Serum Biomarker? Ann Rheum Dis. 2019;78:1549–9.

  90. 90.

    Argyriou E, Roussos P, Nezos A, Venetsanopoulou A, Boki KA, Tzioufas A, et al. Thu0204 Association of Lilra3 Gene with Lymphomagenesis Risk in Young Ss Patients. Ann Rheum Dis. 2019;78:380–0.

  91. 91.

    Low HZ, Reuter S, Topperwien M, Dankenbrink N, Peest D, Kabalak G, et al. Association of the LILRA3 deletion with B-NHL and functional characterization of the immunostimulatory molecule. PLoS One. 2013;8:e81360. https://doi.org/10.1371/journal.pone0081360.

  92. 92.

    Brown D, Trowsdale J, Allen R. The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens. 2004;64:215–25.

  93. 93.

    Baldini C, Gallo A, Perez P, Mosca M, Alevizos I, Bombardieri S. Saliva as an ideal milieu for emerging diagnostic approaches in primary Sjögren’s syndrome. Clin Exp Rheumatol. 2012;30:785–90.

  94. 94.

    Cecchettini A, Finamore F, Ucciferri N, et al. Phenotyping multiple subsets in Sjögren’s syndrome: a salivary proteomic SWATH-MS approach towards precision medicine. Clin Proteomics. 2019. https://doi.org/10.1186/s12014-019-9245-1.

  95. 95.

    Cui L, Elzakra N, Xu S, Xiao GG, Yang Y, Hu S. Investigation of three potential autoantibodies in Sjogren’s syndrome and associated MALT lymphoma. Oncotarget. 2017;8:30039–30,049.

  96. 96.

    Jazzar AA, Shirlaw PJ, Carpenter GH, Challacombe SJ, Proctor GB. Salivary S100A8/A9 in Sjögren’s syndrome accompanied by lymphoma. J Oral Pathol Med. 2018;47:900–6.

  97. 97.

    Ryan RJH, Wilcox RA. Ontogeny, Genetics, Molecular Biology, and Classification of B- and T Cell Non-Hodgkin Lymphoma. Hematol Oncol Clin North Am. 2019;33:553–74.

  98. 98.

    Adrianto I, Wen F, Templeton A, et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet. 2011;43:253–8.

  99. 99.

    Nair RP, Duffin KC, Helms C, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41:199–204.

  100. 100.

    Novak U, Rinaldi A, Kwee I, et al. The NF-{kappa} B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood. 2009;113:4918–21.

  101. 101.

    Kato M, Sanada M, Kato I, et al. Frequent inactivation of A20 in B cell lymphomas. Nature. 2009;459:712–6.

  102. 102.

    Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science. 2010;327:1135–9.

  103. 103.

    Nocturne G, Boudaoud S, Miceli-Richard C, et al. Germline and somatic genetic variations of TNFAIP3 in lymphoma complicating primary Sjögren’s syndrome. Blood. 2013;122:4068–76.

  104. 104.

    Nocturne G, Tarn J, Boudaoud S, et al. Germline variation of TNFAIP3 in primary Sjögren’s syndrome-associated lymphoma. Ann Rheum Dis. 2016;75:780–3.

  105. 105.

    Nezos A, Gkioka E, Koutsilieris M, Voulgarelis M, Tzioufas AG, Mavragani CP. TNFAIP3 F127C Coding Variation in Greek Primary Sjogren’s Syndrome Patients. J Immunol Res. 2018;2018:6923213.

  106. 106.

    Kabalak G, Dobberstein SB, Matthias T, Reuter S, The Y-H, Dörner T, et al. Association of immunoglobulin-like transcript 6 deficiency with Sjögren’s syndrome. Arthritis Rheum. 2009;60:2923–5.

  107. 107.

    Du Y, Cui Y, Liu X, et al. Contribution of functional LILRA3, but not nonfunctional LILRA3, to sex bias in susceptibility and severity of anti-citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheumatol (Hoboken, NJ). 2014;66:822–30.

  108. 108.

    Du Y, Su Y, He J, et al. Impact of the leucocyte immunoglobulin-like receptor A3 (LILRA3) on susceptibility and subphenotypes of systemic lupus erythematosus and Sjögren’s syndrome. Ann Rheum Dis. 2015;74:2070–5.

  109. 109.

    An H, Chandra V, Piraino B, Borges L, Geczy C, McNeil HP, et al. Soluble LILRA3, a potential natural antiinflammatory protein, is increased in patients with rheumatoid arthritis and is tightly regulated by interleukin 10, tumor necrosis factor-alpha, and interferon-gamma. J Rheumatol. 2010;37:1596–606.

  110. 110.

    Colafrancesco S, Ciccacci C, Priori R, Latini A, Picarelli G, Arienzo F, et al. STAT4, TRAF3IP2, IL10, and HCP5 Polymorphisms in Sjögren’s Syndrome: Association with Disease Susceptibility and Clinical Aspects. J Immunol Res. 2019. https://doi.org/10.1155/2019/7682827.

  111. 111.

    Vernet C, Ribouchon MT, Chimini G, Jouanolle AM, Sidibé I, Pontarotti P. A novel coding sequence belonging to a new multicopy gene family mapping within the human MHC class I region. Immunogenetics. 1993;38:47–53.

  112. 112.

    Ciccacci C, Perricone C, Ceccarelli F, et al. A Multilocus Genetic Study in a Cohort of Italian SLE Patients Confirms the Association with STAT4 Gene and Describes a New Association with HCP5 Gene. PLoS One. 2014. https://doi.org/10.1371/journal.pone.0111991.

  113. 113.

    Liu Y, Helms C, Liao W, et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 2008;4:e1000041.

  114. 114.

    Zhai K, Tian X, Wu C, et al. Cytokine BAFF gene variation is associated with survival of patients with T cell lymphomas. Clin Cancer Res. 2012;18:2250–6.

  115. 115.

    Novak AJ, Grote DM, Ziesmer SC, et al. Elevated serum B lymphocyte stimulator levels in patients with familial lymphoproliferative disorders. J Clin Oncol. 2006;24:983–7.

  116. 116.

    Novak AJ, Slager SL, Fredericksen ZS, et al. Genetic variation in BAFF is associated with an increased risk of developing B cell non-Hodgkin lymphoma. Cancer Res. 2009;69:4217–24.

  117. 117.

    Kawasaki A, Tsuchiya N, Fukazawa T, Hashimoto H, Tokunaga K. Analysis on the association of human BLYS (BAFF, TNFSF13B) polymorphisms with systemic lupus erythematosus and rheumatoid arthritis. Genes Immun. 2002;3:424–9.

  118. 118.

    Gottenberg J-E, Sellam J, Ittah M, et al. No evidence for an association between the −871 T/C promoter polymorphism in the B cell-activating factor gene and primary Sjögren’s syndrome. Arthritis Res. 8:6.

  119. 119.

    Nezos A, Papageorgiou A, Fragoulis G, Ioakeimidis D, Koutsilieris M, Tzioufas AG, et al. B cell activating factor genetic variants in lymphomagenesis associated with primary Sjogren’s syndrome. J Autoimmun. 2014;51:89–98.

  120. 120.

    Papageorgiou A, Mavragani CP, Nezos A, Zintzaras E, Quartuccio L, De Vita S, et al. A BAFF receptor His159Tyr mutation in Sjögren’s syndrome-related lymphoproliferation. Arthritis Rheumatol (Hoboken, NJ). 2015;67:2732–41.

  121. 121.

    Nezos A, Makri P, Gandolfo S, De Vita S, Voulgarelis M, Crow MK, et al. TREX1 variants in Sjogren’s syndrome related lymphomagenesis. Cytokine. 2019;154:781.

  122. 122.

    Mazur DJ, Perrino FW. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′-- > 5′ exonucleases. J Biol Chem. 1999;274:19655–19,660.

  123. 123.

    Höss M, Robins P, Naven TJ, Pappin DJ, Sgouros J, Lindahl T. A human DNA editing enzyme homologous to the Escherichia coli DnaQ/MutD protein. EMBO J. 1999;18:3868–75.

  124. 124.

    Lindahl T, Barnes DE, Yang Y-G, Robins P. Biochemical properties of mammalian TREX1 and its association with DNA replication and inherited inflammatory disease. Biochem Soc Trans. 2009;37:535–8.

  125. 125.

    Kavanagh D, Spitzer D, Kothari PH, Shaikh A, Liszewski MK, Richards A, et al. New roles for the major human 3′-5′ exonuclease TREX1 in human disease. Cell Cycle. 2008;7:1718–25.

  126. 126.

    Cuadrado E, Michailidou I, van Bodegraven EJ, et al. Phenotypic variation in Aicardi-Goutières syndrome explained by cell-specific IFN-stimulated gene response and cytokine release. J Immunol. 2015;194:3623–33.

  127. 127.

    Abe J, Nakamura K, Nishikomori R, et al. A nationwide survey of Aicardi-Goutières syndrome patients identifies a strong association between dominant TREX1 mutations and chilblain lesions: Japanese cohort study. Rheumatology (Oxford). 2014;53:448–58.

  128. 128.

    Namjou B, Kothari PH, Kelly JA, et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 2011;12:270–9.

  129. 129.

    Ellyard JI, Jerjen R, Martin JL, et al. Identification of a pathogenic variant in TREX1 in early-onset cerebral systemic lupus erythematosus by Whole-exome sequencing. Arthritis Rheumatol (Hoboken, NJ). 2014;66:3382–6.

  130. 130.

    Hughes M, Little J, Herrick AL, Pushpakom S, Byers H, Worthington J, et al. A synonymous variant in TREX1 is associated with systemic sclerosis and severe digital ischaemia. Scand J Rheumatol. 2017;46:77–8.

  131. 131.

    Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumor immunogenicity. Nat Commun. 2017;8:15618.

  132. 132.

    Fragkioudaki S, Nezos A, Souliotis VL, et al. MTHFR gene variants and non-MALT lymphoma development in primary Sjogren’s syndrome. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-07347-w.

  133. 133.

    Gokul G, Khosla S. DNA methylation and cancer. Subcell Biochem. 2013;61:597–625.

  134. 134.

    Ramos-Casals M, Brito-Zerón P, Bombardieri S, et al. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Ann Rheum Dis. 2019. https://doi.org/10.1136/annrheumdis-2019-216114.

  135. 135.

    Jackson AE, Mian M, Kalpadakis C, et al. Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue of the Salivary Glands: A Multicenter, International Experience of 248 Patients (IELSG 41). Oncologist. 2015;20:1149–53.

  136. 136.

    Pollard RPE, Pijpe J, Bootsma H, Spijkervet FKL, Kluin PM, Roodenburg JLN, et al. Treatment of mucosa-associated lymphoid tissue lymphoma in Sjogren’s syndrome: a retrospective clinical study. J Rheumatol. 2011;38:2198–208.

  137. 137.

    De Vita S, Quartuccio L, Salvin S, Picco L, Scott CA, Rupolo M, et al. Sequential therapy with belimumab followed by rituximab in Sjögren’s syndrome associated with B cell lymphoproliferation and overexpression of BAFF: evidence for long-term efficacy. Clin Exp Rheumatol. 2014;32:490–4.

  138. 138.

    Zucca E, Conconi A, Laszlo D, et al. Addition of rituximab to chlorambucil produces superior event-free survival in the treatment of patients with extranodal marginal-zone B cell lymphoma: 5-year analysis of the IELSG-19 Randomized Study. J Clin Oncol. 2013;31:565–72.

  139. 139.

    Routsias JG, Goules JD, Charalampakis G, Tzima S, Papageorgiou A, Voulgarelis M. Malignant lymphoma in primary Sjögren’s syndrome: an update on the pathogenesis and treatment. Semin Arthritis Rheum. 2013;43:178–86.

  140. 140.

    Saadoun D, Pineton de Chambrun M, Hermine O, Karras A, Choquet S, Jego P, et al. Using Rituximab Plus Fludarabine and Cyclophosphamide as a Treatment for Refractory Mixed Cryoglobulinemia Associated With Lymphoma. Arthritis Care Res. 2013;65:643–7.

  141. 141.

    Salar A, Domingo-Domenech E, Estany C, Canales MA, Gallardo F, Servitje O, et al. Combination therapy with rituximab and intravenous or oral fludarabine in the first-line, systemic treatment of patients with extranodal marginal zone B cell lymphoma of the mucosa-associated lymphoid tissue type. Cancer. 2009;115:5210–7.

  142. 142.

    Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomized, phase 3 non-inferiority trial. Lancet. 2013;381:1203–10.

  143. 143.

    Salar A, Domingo-Domenech E, Panizo C, et al. Long-term results of a phase 2 study of rituximab and bendamustine for mucosa-associated lymphoid tissue lymphoma. Blood. 2017;130:1772–4.

  144. 144.

    Demaria L, Henry J, Seror R, Frenzel L, Hermine O, Mariette X, et al. Rituximab-Bendamustine (R-Benda) in MALT lymphoma complicating primary Sjögren syndrome (pSS). Br J Haematol. 2019;184:472–5.

  145. 145.

    Voulgarelis M, Giannouli S, Tzioufas AG, Moutsopoulos HM. Long term remission of Sjögren’s syndrome associated aggressive B cell non-Hodgkin’s lymphomas following combined B cell depletion therapy and CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone). Ann Rheum Dis. 2006;65:1033–7.

  146. 146.

    Pers J-O, Devauchelle V, Daridon C, et al. BAFF-modulated repopulation of B lymphocytes in the blood and salivary glands of rituximab-treated patients with Sjögren’s syndrome. Arthritis Rheum. 2007;56:1464–77.

  147. 147.

    Cornec D, Costa S, Devauchelle-Pensec V, et al. Blood and salivary-gland BAFF-driven B cell hyperactivity is associated to rituximab inefficacy in primary Sjögren’s syndrome. J Autoimmun. 2016;67:102–10.

  148. 148.

    Carubbi F, Cipriani P, Di Benedetto P, Ruscitti P, Alunno A, Gerli R, et al. Persistence of focal lymphocytic sialadenitis in patients with primary Sjögren’s syndrome treated with rituximab: a possible role for glandular BAFF. Clin Exp Rheumatol. 2016;34:1123–4.

  149. 149.

    Seror R, Nocturne G, Lazure T, et al. Low numbers of blood and salivary natural killer cells are associated with a better response to belimumab in primary Sjögren’s syndrome: Results of the BELISS study. Arthritis Res Ther. 2015;17:1–8.

  150. 150.

    Gandolfo S, De Vita S. Double anti-B cell and anti-BAFF targeting for the treatment of primary Sjögren’s syndrome. Clin Exp Rheumatol. 2019;37(Suppl 118):199–208.

  151. 151.

    Quartuccio L, Mavragani CP, Nezos A, Gandolfo S, Tzioufas AG, De Vita S. Type I interferon signature may influence the effect of belimumab on immunoglobulin levels, including rheumatoid factor in Sjögren’s syndrome. Clin Exp Rheumatol. 2017;35:719–20.

  152. 152.

    Giannouli S, Voulgarelis M. Predicting progression to lymphoma in Sjögren’s syndrome patients. Expert Rev Clin Immunol. 2014;10:501–12.

  153. 153.

    Theander E, Mandl T. Primary Sjögren’s syndrome: diagnostic and prognostic value of salivary gland ultrasonography using a simplified scoring system. Arthritis Care Res. 2014;66:1102–7.

  154. 154.

    Van Mello NM. B cell MALT lymphoma diagnosed by labial minor salivary gland biopsy in patients screened for Sjogren’s syndrome. Ann Rheum Dis. 2004;64:471–3.

  155. 155.

    Keraen J, Blanc E, Besson FL, Leguern V, Meyer C, Henry J, et al. Usefulness of 18 F-Labeled Fluorodeoxyglucose-Positron Emission Tomography for the Diagnosis of Lymphoma in Primary Sjögren’s Syndrome. Arthritis Rheumatol (Hoboken, NJ). 2019;71:1147–57.

Download references

Funding

Dr. Mavragani discloses a grant from Harmonics European Union Project, Grant agreement ID: 731944, funded under: H2020-EU.3.1.1 and coordinated by: Ethniko kai Kapodistriako Panepistimio Athinon, Athens, Greece.

Author information

Correspondence to Clio P Mavragani MD.

Ethics declarations

Conflict of Interest

The other authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Other CTD: Inflammatory Myopathies and Sjogren’s

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skarlis, C., Argyriou, E. & Mavragani, C.P. Lymphoma in Sjögren’s Syndrome: Predictors and Therapeutic Options. Curr Treat Options in Rheum 6, 1–17 (2020). https://doi.org/10.1007/s40674-020-00138-x

Download citation

Keywords

  • Sjögren’s syndrome
  • Lymphoma risk
  • Biomarkers
  • Treatment