Pluralization through epistemic competition: scientific change in times of data-intensive biology

  • Fridolin Gross
  • Nina KrankeEmail author
  • Robert Meunier
Original Paper


We present two case studies from contemporary biology in which we observe conflicts between established and emerging approaches. The first case study discusses the relation between molecular biology and systems biology regarding the explanation of cellular processes, while the second deals with phylogenetic systematics and the challenge posed by recent network approaches to established ideas of evolutionary processes. We show that the emergence of new fields is in both cases driven by the development of high-throughput data generation technologies and the transfer of modeling techniques from other fields. New and emerging views are characterized by different philosophies of nature, i.e. by different ontological and methodological assumptions and epistemic values and virtues. This results in a kind of conflict we call “epistemic competition” that manifests in two ways: On the one hand, opponents engage in mutual critique and defense of their fundamental assumptions. On the other hand, they compete for the acceptance and integration of the knowledge they provide by a broader scientific community. Despite an initial rhetoric of replacement, the views as well as the respective audiences come to be seen as more clearly distinct during the course of the debate. Hence, we observe—contrary to many other accounts of scientific change—that conflict results in the formation of new niches of research, leading to co-existence and perceived complementarity of approaches. Our model thus contributes to the understanding of the pluralization of the scientific landscape.


Scientific change Epistemic competition Data-intensive biology Systems biology Phylogenetic systematics Network models 



This paper was written in the context of the International Biophilosophical School (University of Padua, 27-30 April 2015) as part of the “Integrative Biophilosophy” research project located at the University of Kassel. Funding by the DAAD (German Academic Exchange Service) is gratefully acknowledged. We would like to thank Kristian Köchy, Pierre-Luc Germain, the Editor of the Journal and an anonymous reviewer for helpful comments. R.M. wishes to acknowledge the hospitality of the Institute for Cultural Inquiry (ICI) Berlin where he was an affiliated fellow while revising the paper.


  1. Alon, U. (2007). An Introduction to systems biology: Design principles of biological circuits. Boca Raton: Chapman & Hall.Google Scholar
  2. Andersen, H., & Hepburn, B. (2013). Scientific change. In Internet Encyclopedia of Philosophy. Accessed March 21, 2017.
  3. Ankeny, R. A., & Leonelli, S. (2016). Repertoires: A post-Kuhnian perspective on scientific change and collaborative research. Studies in History and Philosophy of Science, 60, 18–28.CrossRefGoogle Scholar
  4. Bapteste, E., Bouchard, F., & Burian, R. M. (2012a). Philosophy and evolution: Minding the gap between evolutionary patterns and tree-like patterns. In M. Anisimova (Ed.), Evolutionary genomics. Statistical and Computational Methods (Vol. 2, pp. 81–110). New York: Springer.CrossRefGoogle Scholar
  5. Bapteste, E., & Burian, R. M. (2010). On the need of integrative phylogenomics, and some steps toward its creation. Biology and Philosophy, 25(4), 711–736.CrossRefGoogle Scholar
  6. Bapteste, E., & Dupré, J. (2013). Towards a processual microbial ontology. Biology and Philosophy, 28(2), 379–404.CrossRefGoogle Scholar
  7. Bapteste, E., Lopez, P., Bouchard, F., Baquero, F., McInerney, J. O., & Burian, R. M. (2012b). Evolutionary analyses of non-genealogical bonds produced by introgressive descent. Proceedings of the National Academy of Sciences, 109(45), 18266–18772.CrossRefGoogle Scholar
  8. Bapteste, E., van Iersel, L., Janke, A., Kelchner, S., Kelk, S., McInerney, J. O., et al. (2013). Networks: Expanding evolutionary thinking. Trends in Genetics, 29(8), 439–441.CrossRefGoogle Scholar
  9. Barabási, A.-L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101–113.CrossRefGoogle Scholar
  10. Barnes, B. (1977). Interests and the growth of knowledge. London: Routledge.Google Scholar
  11. Bechtel, W., & Richardson, R. C. (2010). Discovering complexity (2nd ed.). Princeton: Princeton University Press.CrossRefGoogle Scholar
  12. Beiko, R. G. (2010). Gene sharing and genome evolution: networks in trees and trees in networks. Biology and Philosophy, 25(4), 659–673.CrossRefGoogle Scholar
  13. Beiko, R. G. (2011). Telling the whole story in a 10,000-genome world. Biology Direct, 6, 34. Scholar
  14. Boogerd, F. C., Bruggeman, F. J., Hofmeyr, J.-H. S., & Westerhoff, H. V. (2007). Introduction. In F. C. Boogerd, F. J. Bruggeman, J.-H. S. Hofmeyr, & H. V. Westerhoff (Eds.), Systems biology: Philosophical foundations (pp. 3–19). Amsterdam: Elsevier.CrossRefGoogle Scholar
  15. Bothwell, J. H. F. (2006). The long past of systems biology. New Phytologist, 170(1), 6–10.CrossRefGoogle Scholar
  16. Brenner, S. (2010). Sequences and consequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 207–212.CrossRefGoogle Scholar
  17. Burian, R. M. (1993). Technique, task definition, and the transition from genetics to molecular genetics: Aspects of the work on protein synthesis in the laboratories of J. Monod and P. Zamecnik. Journal of the History of Biology, 26(3), 387–407.CrossRefGoogle Scholar
  18. Burtt, E. A. (1925). The metaphysical foundations of modern physical science. London: Kegan Paul, Trench, Trubner & Co. LTD.Google Scholar
  19. Calvert, J., & Fujimura, J. H. (2011). Calculating life? Duelling discourses in interdisciplinary systems biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 42(2), 155–163.CrossRefGoogle Scholar
  20. Comas, I., Moya, A., & González-Candelas, F. (2007). From phylogenetics to phylogenomics: The evolutionary relationships of insect endosymbiotic γ-proteobacteria as a test case. Systematic Biology, 56(1), 1–16.CrossRefGoogle Scholar
  21. Corel, E., Lopez, P., Méheust, R., & Bapteste, E. (2016). Network-thinking: Graphs to analyze microbial complexity and evolution. Trends in Microbiology, 24(3), 224–237.CrossRefGoogle Scholar
  22. Daston, L., & Galison, P. (2007). Objectivity. New York: Zone Book.Google Scholar
  23. De Backer, P., De Waele, D., & Van Speybroeck, L. (2010). Ins and outs of systems biology vis-a-vis molecular biology: Continuation or clear cut? Acta Biotheoretica, 58(1), 15–49.CrossRefGoogle Scholar
  24. Delsuc, F., Brinkmann, H., & Philippe, H. (2005). Phylogenomics and the reconstruction of the tree of life. Nature Reviews Genetics, 6(5), 361–375.CrossRefGoogle Scholar
  25. Doolittle, F. W. (2010). The attempt on the life of the tree of life: Science, philosophy and politics. Biology and Philosophy, 25(4), 455–473.CrossRefGoogle Scholar
  26. Doolittle, W. F. (2005). If the tree of life fell, would we recognize the sound? In J. Sapp (Ed.), Microbial phylogeny and evolution. Concepts and controversies (pp. 119–133). Oxford: Oxford University Press.Google Scholar
  27. Evans, G. A. (2000). Designer science and the “omic” revolution. Nature Biotechnology, 18(2), 127.CrossRefGoogle Scholar
  28. Fagan, M. B. (2011). Waddington redux: Models and explanation in stem cell and systems biology. Biology and Philosophy, 27(2), 179–213.CrossRefGoogle Scholar
  29. Fagan, M. B. (2016). Stem cells and systems models: Clashing views of explanation. Synthese, 193(3), 873–907.CrossRefGoogle Scholar
  30. Feinstein, A. R. (1999). Statistical reductionism and clinicians’ delinquencies in humanistic research. Clinical Pharmacology and Therapeutics, 66(3), 211–217.CrossRefGoogle Scholar
  31. Fleck, L. (1979). Genesis and development of a scientific fact. Chicago: University of Chicago Press.Google Scholar
  32. Forster, D., Bittner, L., Karkar, S., Dunthorn, M., Romac, S., Audic, S., et al. (2015). Testing ecological theories with sequence similarity networks: Marine ciliates exhibit similar geographic dispersal patterns as multicellular organisms. BMC Biology, 13 , 16. Scholar
  33. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  34. Gilbert, W. (1991). Towards a paradigm shift in biology. Nature, 349(6305), 99.CrossRefGoogle Scholar
  35. Green, S., Fagan, M., & Jaeger, J. (2015). Explanatory integration challenges in evolutionary systems biology. Biological Theory, 10(1), 18–35.CrossRefGoogle Scholar
  36. Gross, F. (2013). The sum of the parts: Heuristic strategies in systems biology. Accessed May 25, 2017.
  37. Hood, L., Rowen, L., Galas, D. J., & Aitchison, J. D. (2008). Systems biology at the Institute for Systems Biology. Briefings in Functional Genomics & Proteomics, 7(4), 239–248.CrossRefGoogle Scholar
  38. Huang, S. (2000). The practical problems of post-genomic biology. Nature Biotechnology, 18(5), 471–472.CrossRefGoogle Scholar
  39. Huang, S. (2004). Back to the biology in systems biology: What can we learn from biomolecular networks? Briefings in Functional Genomics and Proteomics, 2(4), 279–297.CrossRefGoogle Scholar
  40. Huang, S., Eichler, G., Bar-Yam, Y., & Ingber, D. E. (2005). Cell fates as high-dimensional attractor states of a complex gene regulatory network. Physical Review Letters, 94(12), 1–4.CrossRefGoogle Scholar
  41. Huang, S., Ernberg, I., & Kauffman, S. (2009). Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Seminars in Cell & Developmental Biology, 20(7), 869–876.CrossRefGoogle Scholar
  42. Hull, D. L. (1988). Science as a process: An evolutionary account of the social and conceptual development of science. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  43. Huson, D. H., Rupp, R., & Scornavacca, C. (2010). Phylogenetic networks. Concepts, algorithms and application. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  44. Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. New York: Oxford University Press.Google Scholar
  45. Kellert, S. H., Longino, H. E., & Waters, C. K. (2006). Introduction: The pluralist stance. In S. H. Kellert, H. E. Longino, & C. K. Waters (Eds.), Scientific pluralism (pp. vii–xxix). Minneapolis: University of Minnesota Press.Google Scholar
  46. Kitano, H. (2002). Computational systems biology. Nature, 420(6912), 206–210.CrossRefGoogle Scholar
  47. Köchy, K. (2009). Naturphilosophie ist mehr als angewandte Wissenschaftstheorie. In C. Kummer (Ed.), Was ist Naturphilosophie und was kann sie leisten? (pp. 38–56). Alber: Freiburg & München.Google Scholar
  48. Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed., enlarged). Chicago: University of Chicago Press.Google Scholar
  49. Lakatos, I. (1978). The methodology of scientific research programmes (Vol. 1). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  50. Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge: Harvard University Press.Google Scholar
  51. Laudan, L. (1977). Progress and its problems: Towards a theory of scientific growth. Berkeley: University of California Press.Google Scholar
  52. Leonelli, S. (2016). Data-centric biology: A philosophical study. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  53. Longino, H. E. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. Princeton: Princeton University Press.Google Scholar
  54. Lopez, P., Halary, S., & Bapteste, E. (2015). Highly divergent ancient gene families in metagenomics samples are compatible with additional divisions of life. Biology Direct, 10, 64. Scholar
  55. Loscalzo, J., & Barabási, A.-L. (2011). Systems biology and the future of medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3(6), 619–627.Google Scholar
  56. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.CrossRefGoogle Scholar
  57. MacLeod, M., & Nersessian, N. J. (2016). Interdisciplinary problem-solving: Emerging modes in integrative systems biology. European Journal for Philosophy of Science, 6(3), 401–418.CrossRefGoogle Scholar
  58. Maienschein, J. (2000). Competing epistemologies and developmental biology. In R. Creath & J. Maienschein (Eds.), Biology and epistemology (pp. 122–137). Cambridge: Cambridge University Press.Google Scholar
  59. Marcum, J. A. (2008). Does systems biology represent a Kuhnian paradigm shift? New Phytologist, 179(3), 587–589.CrossRefGoogle Scholar
  60. Merz, M., & Sormani, P. (Eds.). (2015). The local configuration of new research fields: On regional and national diversity. Dordrecht: Springer.Google Scholar
  61. Meunier, R. (2016). Epistemic competition between developmental biology and genetics around 1900: Traditions, concepts and causation. NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, 24(2), 141–167.CrossRefGoogle Scholar
  62. Meunier, R. (2018). Project knowledge and its resituation in the design of research projects: Seymour Benzer’s behavioral genetics, 1965–1974. Studies in History and Philosophy of Science. CrossRefGoogle Scholar
  63. Meunier, R., & Nickelsen, K. (2018). New perspectives in the history of twentieth-century life sciences: Historical, historiographical and epistemological themes. History and Philosophy of the Life Sciences, 40, 19.CrossRefGoogle Scholar
  64. Mindell, D. P. (2013). The tree of life: Metaphor, model, and heuristic device. Systematic Biology, 62(3), 479–489.CrossRefGoogle Scholar
  65. Morrison, D. A. (2011). Introduction to phylogenetic networks. Uppsala: RJR Productions.Google Scholar
  66. Morrison, D. A. (2014). Is the tree of life the best metaphor, model, or heuristic for phylogenetics? Systematic Biology, 63(4), 628–638.CrossRefGoogle Scholar
  67. Nersessian, N. J., & Chandrasekharan, S. (2009). Hybrid analogies in conceptual innovation in science. Cognitive Systems Research, 10(3), 178–188.CrossRefGoogle Scholar
  68. Nickelsen, K. (2014). Kooperation und Konkurrenz in den Naturwissenschaften. In R. Jessen (Ed.), Konkurrenz in der Geschichte: Praktiken - Werte - Institutionalisierungen (pp. 333–379). Frankfurt am Main: Campus Verlag.Google Scholar
  69. O’Malley, M. A. (2010). Ernst Mayr, the tree of life, and philosophy of biology. Biology and Philosophy, 25(4), 529–552.CrossRefGoogle Scholar
  70. O’Malley, M. A. (2013). When integration fails: Prokaryote phylogeny and the tree of life. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(4), 551–562.CrossRefGoogle Scholar
  71. O’Malley, M. A. (2014). Philosophy of microbiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  72. O’Malley, M. A., & Boucher, Y. (2005). Paradigm change in evolutionary microbiology. Studies in History and Philosophy of Biological and Biomedical Sciences, 36(1), 183–208.CrossRefGoogle Scholar
  73. O’Malley, M. A., & Dupré, J. (2005). Fundamental issues in systems biology. BioEssays, 27(12), 1270–1276.CrossRefGoogle Scholar
  74. O’Malley, M. A., & Koonin, E. V. (2011). How stands the tree of life a century and a half after the origin? Biology Direct, 6, 32. Scholar
  75. O’Malley, M. A., Martin, W., & Dupré, J. (2010). The tree of life: Introduction to an evolutionary debate. Biology and Philosophy, 25(4), 441–453.CrossRefGoogle Scholar
  76. Oberheim, E., & Hoyningen-Huene, P. (2018). The incommensurability of scientific theories. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2018). Accessed November 16, 2018.
  77. Palsson, B. Ø. (2006). Systems biology: Properties of reconstructed networks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  78. Paul, N. W. (2009). Rationalitäten der Wissenproduktion: Über Transformationen von Gegenständen, Technologien und Information in Biomedizin und Lebenswissenschaften. Berichte Zur Wissenschaftsgeschichte, 32(3), 230–245.CrossRefGoogle Scholar
  79. Pellens, R., & Grandcolas, P. (2016). Biodiversity Conservation and Phylogenetic Systematics. Preserving our evolutionary heritage in an extinction crisis. Berlin: Springer.CrossRefGoogle Scholar
  80. Poon, W. C. K. (2011). Interdisciplinary reflections: The case of physics and biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 42(2), 115–118.CrossRefGoogle Scholar
  81. Powell, A., & Dupré, J. (2009). From molecules to systems: The importance of looking both ways. Studies in History and Philosophy of Biological and Biomedical Sciences, 40(1), 54–64.CrossRefGoogle Scholar
  82. Powell, A., O’Malley, M. A., Müller-Wille, S., Calvert, J., & Dupré, J. (2007). Disciplinary baptisms: A comparison of the naming stories of genetics, molecular biology, genomics, and systems biology. History and Philosophy of the Life Sciences, 29(1), 5–32.Google Scholar
  83. Purvis, A., Gittleman, J. L., & Brooks, T. (2005). Phylogeny and conservation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  84. Rheinberger, H.-J. (1997). Toward a history of epistemic things: Synthesizing proteins in the test tube. Stanford: Stanford University Press.Google Scholar
  85. Rheinberger, H.-J. (2009). Recent science and its exploration: The case of molecular biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 40(1), 6–12.CrossRefGoogle Scholar
  86. Sapp, J. (1983). The struggle for authority in the field of heredity, 1900–1932: New perspectives on the rise of genetics. Journal of the History of Biology, 16(3), 311–342.CrossRefGoogle Scholar
  87. Sauer, T., & Scholl, R. (2016). The philosophy of historical case studies. New York: Springer.CrossRefGoogle Scholar
  88. Schaffner, K. F. (2002). Reductionism, complexity and molecular medicine: Genetic chips and the ‘globalization’ of the genome. In M. H. V. Van Regenmortel & D. A. Hull (Eds.), Promises and limits of reductionism in the biomedical sciences (pp. 323–347). Hoboken: Wiley.CrossRefGoogle Scholar
  89. Shapere, D. (1984). Reason and the search for knowledge: Investigations in the philosophy of science. Dordrecht: Reidel.Google Scholar
  90. Sismondo, S. (2010). An introduction to science and technology studies (2nd ed.). Malden, MA: Wiley.Google Scholar
  91. Soler, L., Sankey, H., & Hoyningen-Huene, P. (Eds.). (2008). Rethinking scientific change and theory comparison: Stabilities, ruptures, incommensurabilities? Dordrecht: Springer.Google Scholar
  92. Stevens, C. F. (2004). Systems biology versus molecular biology. Current Biology, 14(2), 51–52.CrossRefGoogle Scholar
  93. Strohman, R. C. (1997). The coming Kuhnian revolution in biology. Nature Biotechnology, 15(3), 194–200.CrossRefGoogle Scholar
  94. Velasco, J. D. (2012). The future of systematics: Tree thinking without the tree. Philosophy of Science, 79(5), 624–636.CrossRefGoogle Scholar
  95. Völkel, F., Bapteste, E., Habib, M., Lopez, P., & Vigliotti, C. (2016). Read networks and k-laminar graphs. Computing Research Repository. arXiv:1603.01179
  96. Volkmann, L., Martyn, I., Moulton, V., Spillner, A., & Mooers, A. O. (2014). Prioritizing populations for conservation using phylogenetic networks. PLoS ONE, 9(2), e88945. Scholar
  97. Waddington, C. H. (1957). The strategy of the genes: A discussion of some aspects of theoretical biology. London: Allen & Unwin.Google Scholar
  98. Weingart, P. (1974). On a sociological theory of scientific change. In R. Whitley (Ed.), Social processes of scientific development (pp. 45–68). London: Law Book Co of Australasia.Google Scholar
  99. Yook, S.-H., Oltvai, Z. N., & Barabási, A.-L. (2004). Functional and topological characterization of protein interaction networks. Proteomics, 4(4), 928–942.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für PhilosophieUniversität KasselKasselGermany
  2. 2.Philosophisches SeminarWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations