On the historical significance of Beijerinck and his contagium vivum fluidum for modern virology

  • Neeraja SankaranEmail author
Original Paper


This paper considers the foundational role of the contagium vivum fluidum—first proposed by the Dutch microbiologist Martinus Beijerinck in 1898—in the history of virology, particularly in shaping the modern virus concept, defined in the 1950s. Investigating the cause of mosaic disease of tobacco, previously shown to be an invisible and filterable entity, Beijerinck concluded that it was neither particulate like the bacteria implicated in certain infectious diseases, nor soluble like the toxins and enzymes responsible for symptoms in others. He offered a completely new explanation, proposing that the agent was a “living infectious fluid” whose reproduction was intimately linked to that of its host cell. Difficult to test at the time, the contagium vivum fluidum languished in obscurity for more than three decades. Subsequent advances in technologies prompted virus researchers of the 1930s and 1940s—the first to separate themselves from bacteriologists—to revive the idea. They found in it both the seeds for their emerging virus concept and a way to bring hitherto opposing thought styles about the nature of viruses and life together in consensus. Thus, they resurrected Beijerinck as the founding father, and contagium vivum fluidum as the core concept of their discipline.


Contagium vivum fluidum Martinus Beijerinck History of virology Modern virus concept Straddling thought styles 



Even a single-authored paper is a work of cooperation and I would like to thank the many people who read and commented on various versions of this paper, especially Ton van Helvoort, my co-author on other projects; Karen-Beth Scholthof and Greg Radick for their reading of earlier drafts; Gregory Morgan, Christoph Gradmann, Gladys Kostyrka, Minakshi Menon and Susie Fisher for their participation in an online discussion around an earlier version of this paper; and last, but certainly not least, Staffan Müller-Wille for his insights and encouragement of this project. All holes and mistakes are naturally mine alone.


  1. Allard, H. A. (1914). A review of investigations of the mosaic disease of Tobacco, together with a bibliography of the more important contributions. Bulletin of the Torrey Botanical Club, 41(9), 435–458.CrossRefGoogle Scholar
  2. Avery, O. T., Colin, M. M., & McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. The Journal of Experimental Medicine, 79(2), 137–158.CrossRefGoogle Scholar
  3. Baur, E. (1904). Zur Ätiologie Der Infektiösen Panachierung. Ber. Dt. Bot. Ges., 22, 453–460. [On the aetiology of infectious variegation].Google Scholar
  4. Beijerinck, M. W. (1898). Ueber ein contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblatter. Verh. Kon. Akad. Wetensch., 63, 3–21. (Translated and reprinted in 1942 as “Concerning a contagium vivum fluidum as cause of the spot disease of Tobacco-leaves,” Phytopathological Classics 7: 33–52).Google Scholar
  5. Beijerinck, M. W. (1899). Ueber ein contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblatter. Centralblatt fur Bacteriologie und Parasitenkunde, Part II, 5, 27–33. (Translated and reprinted in 1961 as “A contagium vivum fluidum as the cause of the mosaic disease of Tobacco leaves”, In Milestones in Microbiology: 1546 to 1940, by T.D. Brock, translated by T.D. Brock, 153–57. ASM Press).Google Scholar
  6. Beijerinck, M. W. (1913). De Infusies En de Ontdekking Der Bakterien. Jaarboek van de Koninklijke Akademie van Wetenschappen, 1–13. [Infusions and the discovery of bacteria].Google Scholar
  7. Beijerinck, M. W. (1922). Pasteur En de Ultramicrobiologie. Chemicsh Weekblad, 19, 525–527.Google Scholar
  8. Bos, L. (1981). Hundred years of Koch’s postulates and the history of etiology in plant virus research. Netherlands Journal of Plant Pathology, 87(3), 91–110.CrossRefGoogle Scholar
  9. Bos, L. (1995). The embryonic beginning of virology: Unbiased thinking and dogmatic stagnation. Archives of Virology, 140(3), 613–619. Scholar
  10. Bos, L. (1999). Beijerinck’s work on Tobacco mosaic virus: Historical context and legacy. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1383), 675–685.CrossRefGoogle Scholar
  11. Boycott, A. E. (1928). The transition from live to dead: The nature of filtrable viruses. Journal of the Royal Society of Medicine, 22(1), 55–69.Google Scholar
  12. Brorson, S. (2000). Ludwik Fleck on proto-ideas in medicine. Medicine, Health Care and Philosophy, 3(2), 147–152.CrossRefGoogle Scholar
  13. Burnet, F. M., & McKie, M. (1929). Observations on a permanently lysogenic strain of B. entiritidis Gaertner. The Australian Journal for Experimental Biology and Medical Science, 6(4), 277–284.CrossRefGoogle Scholar
  14. Chamberland, C. (1884). Sur Un Filtre Donnant de l’eau Physiologiquement Pure. C. R. Hebd. Acad. Sci. Paris, 99, 247–248. [“A Filter Permitting to Obtain Physiologically Pure Water”].Google Scholar
  15. Cohen, R. S., & Schnelle, T. (Eds.). (1986). Cognition and fact: Materials on Ludwik Fleck. Boston: D. Reidel Publishing Company.Google Scholar
  16. Correns, C. E. (1900). G. Mendels Regel Über das Verhalten der Nachkommenschaft der Rassenbastarde. Berichte der Deutschen Botanischen Gesellschaft, 8, 156–168. (Translated and reprinted as 1950. “G. Mendel’s Law concerning the behavior of progeny of varietal hybrids”, Genetics 35(5): 33–41).Google Scholar
  17. Creager, A. N. H. (2002). The life of a virus: Tobacco mosaic virus as an experimental model, 1930–1965. Chicago: University of Chicago Press.Google Scholar
  18. D’Hérelle, F. (1926). The bacteriophage and its behavior (trans: Smith, G.H.). Baltimore, MD: The Williams & Wilkins Co. (Original book: D’Hérelle, Félix. 1926. Le Bactériophage et Son Comportement. Masson.).Google Scholar
  19. De Vries, H. (1900a). Sur La Loi Do Disjonction Des Hybrides. Comptes Rendus de l’Academie Des Sciences, 130, 845–847.Google Scholar
  20. De Vries, H. (1900b). Sur les unités des caractéres spécifiques et leur application á l’étude des hybrides. La Revue Générale de Botanique, 12, 257–271.Google Scholar
  21. D’Hérelle, F. (1917). Sur un microbe invisible antagoniste des bacilles dysentériques. Comptes Rendus de l’Académie Des Sciences, 145, 373–375.Google Scholar
  22. D’Hérelle, F. (1928). Bacteriophage: A living Colloidal Micell. In J. Alexander (Ed.), Colloid chemistry: Theoretical and applied, II: Biology & Medicine (pp. 535–541). New York, NY: The Chemical Catalog Company Inc.Google Scholar
  23. Duckworth, D. H. (1976). Who discovered bacteriophage? Microbiology and Molecular Biology Reviews, 40(4), 793–802.Google Scholar
  24. Fleck, L. (1960). Crisis in science. In R. S. Cohen & T. Schnelle (Eds.), Cognition and fact: Materials on Ludwik Fleck, (1986) (pp. 153–158). Boston: D. Reidel Publishing Company.Google Scholar
  25. Fleck, L. (1979). Genesis and development of a scientific fact. Edited by T.J. Trenn and R.K. Merton (trans: Trenn, T. J., & Bradley, F.). Chicago: University of Chicago Press. [Originally published in German as Fleck, Ludwik. 1935. Entstehung Und Entwicklung Einer Wissenschaftlichen Tatsache: Einfuhrung in Die Lehre Vom Denkstil Und Denkkollektiv. Basel, Switzerland: Benno Schwabe).Google Scholar
  26. Fraenkel-Conrat, H. (1981). Portraits of viruses: Tobacco mosaic virus. Intervirology, 15(4), 177–189.CrossRefGoogle Scholar
  27. Galperin, C. (1987). Le Bactériophage, La Lysogénie et Son Déterminisme Génétique. History and Philosophy of the Life Sciences, 9, 175–224.Google Scholar
  28. Harrison, B. D., & Wilson, T. M. A. (1999). Milestones in the research on Tobacco mosaic virus. Philosophical Transactions: Biological Sciences, 354(1383), 521–529.CrossRefGoogle Scholar
  29. Holmes, F. O. (1929). Local lesions in Tobacco mosaic. Botanical Gazette, 87(1), 39–55.CrossRefGoogle Scholar
  30. Horzinek, M. C. (1997). The birth of virology. Antonie van Leeuwenhoek, 71(1), 15–20.CrossRefGoogle Scholar
  31. Hughes, S. S. (1977). The virus: A history of the concept. Portsmouth: Heinemann Educational Books.Google Scholar
  32. Ivanowski, D. M. (1892). Ueber Die Mosaikkrankheit Der Tabakspflanze. St. Petersb. Acad. Imp. Sci. Bull., 35, 67–70. (Translated and reprinted in 1942 as “On the mosaic disease of the Tobacco plant,” Phytopathological Classics 7: 27–30).Google Scholar
  33. Ivanowski, D. M. (1899). Ueber Die Mosaikkrankheit Der Tabakspflanz. Centbl. Bakteriol, 5, 250–254. [On the Mosaic Disease of the Tobacco Plant].Google Scholar
  34. Ivanowski, D. M. (1903). Uber Die Mosaikkrankheit Der Tabakspflanze. Z Pflanzenkrankheit, 13, 1–41. [On the Mosaic Disease of the Tobacco Plant].Google Scholar
  35. Jenner, E. (1798). An inquiry into the causes and effects of the Variolae Vaccinae, a disease discovered in some of the western counties of England, particularly Gloucestershire, and known by the name of the Cow Pox. Google Scholar
  36. Kausche, G. A., Pfankuch, E., & Ruska, H. (1939). Die Sichtbarmachung von Pflanzlichem Virus Im Übermikroskop. Naturewissenschaften, 27, 292–299.CrossRefGoogle Scholar
  37. Kuhn, T. S. (2012). The structure of scientific revolutions: 50th Anniversary edition (4th ed.). Chicago: University of Chicago Press.CrossRefGoogle Scholar
  38. Lechevalier, H. (1972). Dmitri Iosifovich Ivanovski (1864–1920). Bacteriological Reviews, 36(2), 135–145.Google Scholar
  39. Löffler, F., & Frosch, P. (1898). Berichte der Kommission zur Erforschung der Maul-und Klauenseuche bei dem Institut für Infektionskrankheiten in Berlin. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Part I, 23, 371–391. (Translated and reprinted in 1961 as “Report of the commission for research on the foot-and-mouth disease”, In Milestones in Microbiology: 1546 to 1940, by T.D. Brock, translated by T.D. Brock, 149–53. ASM Press).Google Scholar
  40. Loison, L., Gayon, J., & Burian, R. M. (2017). The contributions—and Collapse—of Lamarckian Heredity in Pasteurian Molecular Biology: 1. Lysogeny, 1900–1960. Journal of the History of Biology, 50(1), 5–52.CrossRefGoogle Scholar
  41. Löwy, I. (1988). Ludwik Fleck on the social construction of medical knowledge. Sociology of Health & Illness, 10(2), 133–155.Google Scholar
  42. Löwy, I. (1990). Variances in meaning in discovery accounts: The case of contemporary biology. Historical Studies in the Physical and Biological Sciences, 21(1), 87–121.CrossRefGoogle Scholar
  43. Lustig, A., & Levine, A. J. (1992). One hundred years of virology. Journal of Virology, 66(8), 4629–4631.Google Scholar
  44. Lwoff, A. (1953). Lysogeny. Bacteriological Reviews, 17(4), 269–337.Google Scholar
  45. Lwoff, A. (1957). The concept of virus. Journal of General Microbiology, 17(2), 239–253.Google Scholar
  46. Lwoff, A. (1966). The prophage and I. In Phage and the origins of molecular biology (pp. 88–99). Cold Spring Harbor Laboratory of Quantitative Biology.Google Scholar
  47. Mayer, A. (1886). Uber Die Mosaikkrankenheit Des Tabaks. Die Landwirtschaftlichen Versuchs-Stationen, 32, 451–467. (Translated and reprinted in 1942 as “Concerning the mosaic disease of Tobacco,” Phytopathological Classics 7: 11–24).Google Scholar
  48. McKinney, H. H. (1927). Quantitative and purification methods in virus studies. Journal of Agricultural Research, 35(1), 13–38.Google Scholar
  49. Mendel, G. (1866). Versuche über Plflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr 1865, Abhandlungen, 3–47.Google Scholar
  50. Mößner, N. (2011). Thought styles and paradigms: A comparative study of Ludwik Fleck and Thomas S. Kuhn. Studies In History and Philosophy of Science Part A, 42, 416–425.CrossRefGoogle Scholar
  51. Murphy, F. A. (2016). Historical perspective: What constitutes discovery (of a new virus)? Advances in Virus Research, 95, 197–220.CrossRefGoogle Scholar
  52. Northrop, J. H. (1937). Chemical nature and mode of formation of pepsin, trypsin and bacteriophage. Science, 86(2239), 479–483.CrossRefGoogle Scholar
  53. Olby, R. (1997). Mendel, mendelism and genetics. Mendelweb. Accessed November 15 2017.
  54. Olby, R., & Gautrey, P. (1968). Eleven references to mendel before 1900. Annals of Science, 24(1), 7–20.CrossRefGoogle Scholar
  55. Pasteur, L. (1890). La rage. [“Rabies”] (Reprinted in 1922 in Oeuvres complètes, volume VI).Google Scholar
  56. Purdy, H. A. (1926). Attempt to cultivate an organism from tomato mosaic. Botanical Gazette, 81(2), 210–217.CrossRefGoogle Scholar
  57. Purdy, H. A. (1928). Immunologic reactions with Tobacco mosaic virus. Proceedings of the Society for Experimental Biology and Medicine, 25(8), 702–703.CrossRefGoogle Scholar
  58. Rasmussen, N. (1999). Picture control: The electron microscope and the transformation of biology in America, 1940–1960. Stanford: Stanford University Press.Google Scholar
  59. Rivers, T. M. (1927). Filterable viruses: A critical review. Journal of Bacteriology, 14(4), 217–258.Google Scholar
  60. Rivers, T. M. (1932). The nature of viruses. Physiological Reviews, 12(3), 423–452.CrossRefGoogle Scholar
  61. Rivers, T. M., & Benison, S. (1967). Tom rivers; reflections on a life in medicine and science: An oral history memoir prepared by Saul Benison. Cambridge: MIT Press.Google Scholar
  62. Roux, E., & Yersin, A. (1888). Contribution à l’étude de la diphthérie. Annls Inst. Pasteur, Paris, 2, 629–661.Google Scholar
  63. Ruska, H., von Borries, B., & Ruska, E. (1939). Die Bedeutung Der Übermikroskopie Für Die Virusforschung. Archives of Virology, 1(1), 155–169.Google Scholar
  64. Rutherford, E., Martin, C., Murphy, P. A., Arkwright, J. A., Barnard, J. E., Smith, K. M., et al. (1929). Discussion on “Ultra-microscopic viruses infecting animals and plants”. Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character, 104(733), 537–560.CrossRefGoogle Scholar
  65. Sankaran, N. (2008). Stepping-stones to one-step growth: Frank Macfarlane Burnet’s role in elucidating the viral nature of the bacteriophages. Historical Records of Australian Science, 19(1), 83–100.CrossRefGoogle Scholar
  66. Scholthof, K. (1997). Tobacco mosaic virus: The beginnings of plant virology. Plant Health Instructor. Scholar
  67. Simon, C. E. (1926). The filterable viruses and their nature. The Scientific Monthly, 23(5), 407–413.Google Scholar
  68. Stanley, W. M. (1935). Isolation of a crystalline protein possessing the properties of Tobacco mosaic virus. Science, 81(2113), 644–645.CrossRefGoogle Scholar
  69. Stanley, W. M. (1938). The nature of viruses. Transactions of the New York Academy of Sciences, 1(2 Series II), 21–24.CrossRefGoogle Scholar
  70. Stanley, W. M. (1957). On the nature of viruses, cancer, genes, and life-a declaration of dependence. Proceedings of the American Philosophical Society, 101(4), 317–324.Google Scholar
  71. Summers, W. C. (1999). Felix d’Hérelle and the origins of molecular biology. New Haven, CT: Yale University Press.Google Scholar
  72. Summers, W. C. (2014). Inventing viruses. Annual Review of Virology, 1(1), 25–35.CrossRefGoogle Scholar
  73. Tschermak, E. (1900). Ueber künstliche kreuzung bei Pisum sativum. Berichte der Deutschen Botanischen Gesellschaft, 18, 232–249.Google Scholar
  74. Twort, F. W. (1915). An Investigation on the nature of ultra-microscopic viruses. The Lancet, 186(4814), 1241–1243.CrossRefGoogle Scholar
  75. Van Helvoort, T. (1991). What is a virus? The case of Tobacco mosaic disease. Studies in History and Philosophy of Science, 22(4), 557–588.CrossRefGoogle Scholar
  76. Van Helvoort, T. (1992). Bacteriological and physiological research styles in the early controversy on the nature of the bacteriophage phenomenon. Medical History, 36(3), 243–270.CrossRefGoogle Scholar
  77. Van Helvoort, T. (1994). History of virus research in the twentieth century: The problem of conceptual continuity. History of Science, 32(96), 185–235.CrossRefGoogle Scholar
  78. van Helvoort, T., & Sankaran, N. (2018). How seeing became knowing: The role of the electron microscope in shaping the modern definition of viruses. Journal of the History of Biology. Scholar
  79. Van Iterson, G., den Dooren de Jong, L. E., & Kluyver, A. J. (1940). Martinus Willem Beijerinck: His life and his work. Springer (2013 reprint). [Also reprinted with additional historical commentaries as Bos, P., and Theunissen, B., (eds.) 1995, Beijerinck and the Delft School of Microbiology, Delft: Delft University Press].Google Scholar
  80. Van Regenmortel, M. H. V. (2008). The nature of viruses (3rd ed.)., Encyclopedia of virology Amsterdam: Elsevier.Google Scholar
  81. Waterson, A. P., & Wilkinson, L. (1978). An introduction to the history of virology. Cambridge: Cambridge University Press.Google Scholar
  82. Wilkinson, L. (1976). The development of the virus concept as reflected in corpora of studies on individual pathogens 3. Lessons of the plant viruses-Tobacco mosaic virus. Medical History, 20(2), 111–134.CrossRefGoogle Scholar
  83. Witz, J. (1998). A reappraisal of the contribution of friedrich Loeffler to the development of the modern concept of virus. Archives of Virology, 143(11), 2261–2263.CrossRefGoogle Scholar
  84. Wolbach, S. B. (1912). The filterable viruses, a summary. The Boston Medical and Surgical Journal, 167(13), 419–427.CrossRefGoogle Scholar
  85. Wollman, E. (1935). The phenomenon of Twort-d’Hérelle and it’s significance. The Lancet, 226(5858), 1312–1314.CrossRefGoogle Scholar
  86. Woods, A. F. (1902).“Observations on the mosaic disease of Tobacco. Bulletin No. 18. Washington, DC: Bureau of Plant Industry, USDA.Google Scholar
  87. Zaitlin, M. (1998). The discovery of the causal agent of the Tobacco mosaic disease. In S. D. Kung & S. F. Yang (Eds.), Discoveries in plant biology (pp. 105–110). Hong Kong: World Publishing Co.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.BangaloreIndia

Personalised recommendations