Advertisement

Influence of Fire on the Carbon Cycle and Climate

  • Gitta LasslopEmail author
  • Alysha I. Coppola
  • Apostolos Voulgarakis
  • Chao Yue
  • Sander Veraverbeke
Carbon Cycle and Climate (K Zickfeld, JR Melton and N Lovenduski)
Part of the following topical collections:
  1. Topical Collection on Carbon Cycle and Climate

Abstract

Purpose of Review

Understanding of how fire affects the carbon cycle and climate is crucial for climate change adaptation and mitigation strategies. As those are often based on Earth system model simulations, we identify recent progress and research needs that can improve the model representation of fire and its impacts.

Recent Findings

New constraints of fire effects on the carbon cycle and climate are provided by the quantification of the carbon ages and effects of vegetation types and traits. For global scale modelling, the low understanding of the human–fire relationship is limiting.

Summary

Recent developments allow improvements in Earth system models with respect to the influences of vegetation on climate, peatland burning and the pyrogenic carbon cycle. Better understanding of human influences is required. Given the impacts of fire on carbon storage and climate, thorough understanding of the effects of fire in the Earth system is crucial to support climate change mitigation and adaptation.

Keywords

Fire Carbon cycle Climate Peatlands Pyrogenic carbon Vegetation traits 

Notes

Acknowledgements

We acknowledge feedback and suggestions on the manuscript from Fang Li and Daniel Ward, the editor and two reviewers.

Funding

Gitta Lasslop is funded by the German Research Foundation. Sander Veraverbeke received support from the Netherlands Organisation for Scientific Research (NWO) through his Vidi grant ‘Fires pushing trees North’. Alysha Coppola received funding from the University of Zurich for Forschungskredit post-doctoral fellowship. Chao Yue received support from the China One Thousand Youth Programme.

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Grassi G, House J, Dentener F, Federici S, den Elzen M, Penman J. The key role of forests in meeting climate targets requires science for credible mitigation. Nat Clim Chang. 2017;7:220–6.CrossRefGoogle Scholar
  2. 2.
    Crutzen PJ, Andreae MO. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science. 1990;250:1669–78.CrossRefGoogle Scholar
  3. 3.
    Seiler W, Crutzen PJ. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Chang. 1980;2:207–47.CrossRefGoogle Scholar
  4. 4.
    Bond WJ, Woodward FI, Midgley GF. The global distribution of ecosystems in a world without fire. New Phytol. 2005;165:525–37.CrossRefGoogle Scholar
  5. 5.
    Ward DS, Kloster S, Mahowald NM, Rogers BM, Randerson JT, Hess PG. The changing radiative forcing of fires: global model estimates for past, present and future. Atmos Chem Phys. 2012;12:10857–86.CrossRefGoogle Scholar
  6. 6.
    Chen Y, Randerson JT, Van Der Werf GR, Morton DC, Mu M, Kasibhatla PS. Nitrogen deposition in tropical forests from savanna and deforestation fires. Glob Chang Biol. 2010;16:2024–38.CrossRefGoogle Scholar
  7. 7.
    Mahowald NM, Artaxo P, Baker AR, Jickells TD, Okin GS, Randerson JT, et al. Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Glob Biogeochem Cycles. 2005;19.  https://doi.org/10.1029/2005GB002541.
  8. 8.
    Voulgarakis A, Field RD. Fire influences on atmospheric composition, air quality and climate. Curr Pollution Rep. 2015;1:70–81.CrossRefGoogle Scholar
  9. 9.
    Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, et al. Fire in the Earth system. Science. 2009;324:481–4.CrossRefGoogle Scholar
  10. 10.
    Landry J-S, Matthews HD, Ramankutty N. A global assessment of the carbon cycle and temperature responses to major changes in future fire regime. Clim Chang. 2015;133:179–92.CrossRefGoogle Scholar
  11. 11.
    Archibald S, Lehmann CER, Belcher CM, Bond WJ, Bradstock RA, Daniau AL, et al. Biological and geophysical feedbacks with fire in the Earth system. Environ Res Lett. 2018;13:033003.CrossRefGoogle Scholar
  12. 12.
    Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, et al. The impact of boreal forest fire on climate warming. Science. 2006;314:1130–2.CrossRefGoogle Scholar
  13. 13.
    • Hantson S, Arneth A, Harrison SP, et al. The status and challenge of global fire modelling. Biogeosciences. 2016;13:3359–75 This paper provides an overview of global modelling approaches and their history.CrossRefGoogle Scholar
  14. 14.
    Kloster S, Lasslop G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob Planet Change. 2017;150:58–69.CrossRefGoogle Scholar
  15. 15.
    Rabin SS, Melton JR, Lasslop G, Bachelet D, Forrest M, Hantson S, et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci Model Dev. 2017;10:1175–97.CrossRefGoogle Scholar
  16. 16.
    Forkel M, Andela N, Harrison SP, Lasslop G, van Marle M, Chuvieco E, et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences. 2019;16(1):57–76.  https://doi.org/10.5194/bg-16-57-2019.
  17. 17.
    Li F, Bond-Lamberty B, Levis S. Quantifying the role of fire in the Earth system—part 2: impact on the net carbon balance of global terrestrial ecosystems for the 20th century. Biogeosciences. 2014;11:1345–60.CrossRefGoogle Scholar
  18. 18.
    Yue C, Ciais P, Cadule P, Thonicke K, van Leeuwen TT. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—part 2: carbon emissions and the role of fires in the global carbon balance. Geosci Model Dev. 2015;8:1321–38.CrossRefGoogle Scholar
  19. 19.
    Poulter B, Cadule P, Cheiney A, Ciais P, Hodson E, Peylin P, et al. Sensitivity of global terrestrial carbon cycle dynamics to variability in satellite-observed burned area. Glob Biogeochem Cycles. 2015;29:207–22.CrossRefGoogle Scholar
  20. 20.
    Yang J, Tian H, Tao B, Ren W, Lu C, Pan S, et al. Century-scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Glob Biogeochem Cycles. 2015;29:1549–66.CrossRefGoogle Scholar
  21. 21.
    Higgins SI, Scheiter S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature. 2012;488:209–12.CrossRefGoogle Scholar
  22. 22.
    Baudena M, Dekker SC, van Bodegom PM, Cuesta B, Higgins SI, Lehsten V, et al. Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models. Biogeosciences. 2015;12:1833–48.CrossRefGoogle Scholar
  23. 23.
    Lasslop G, Brovkin V, Reick CH, Bathiany S, Kloster S. Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback. Geophys Res Lett. 2016;43:6324–31.CrossRefGoogle Scholar
  24. 24.
    Yue C, Ciais P, Zhu D, Wang T, Peng SS, Piao SL. How have past fire disturbances contributed to the current carbon balance of boreal ecosystems? Biogeosciences. 2016;13:675–90.CrossRefGoogle Scholar
  25. 25.
    Braakhekke MC, Rebel KT, Dekker SC, Smith B, Beusen AHW, Wassen MJ. Nitrogen leaching from natural ecosystems under global change: a modelling study. Earth Syst Dynam. 2017;8:1121–39.CrossRefGoogle Scholar
  26. 26.
    • Bauters M, Drake TW, Verbeeck H, et al. High fire-derived nitrogen deposition on central African forests. Proc Natl Acad Sci USA. 2018;115:549–54 This study provides observations of nitrogen redistribution, a high nitrogen deposition flux in a central African forest and attribute the deposition to fire emissions.CrossRefGoogle Scholar
  27. 27.
    Wang R, Balkanski Y, Boucher O, Ciais P, Peñuelas J, Tao S. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nat Geosci. 2015;8:48–54.CrossRefGoogle Scholar
  28. 28.
    Pacifico F, Folberth GA, Sitch S, Haywood JM, Rizzo LV, Malavelle FF, et al. Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study. Atmos Chem Phys. 2015;15:2791–804.CrossRefGoogle Scholar
  29. 29.
    Yue X, Strada S, Unger N, Wang A. Future inhibition of ecosystem productivity by increasing wildfire pollution over boreal North America. Atmos Chem Phys. 2017;17:13699–719.CrossRefGoogle Scholar
  30. 30.
    •• Andela N, Morton DC, Giglio L, et al. A human-driven decline in global burned area. Science. 2017;356:1356–62 They report a human-driven decline in global burned area observed by satellites, related to increased intensity of land management.CrossRefGoogle Scholar
  31. 31.
    Erb K-H, Luyssaert S, Meyfroidt P, Pongratz J, Don A, Kloster S, et al. Land management: data availability and process understanding for global change studies. Glob Chang Biol. 2017;23:512–33.CrossRefGoogle Scholar
  32. 32.
    Li F, Lawrence DM, Bond-Lamberty B. Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories. Glob Planet Change. 2018;162:18–27.CrossRefGoogle Scholar
  33. 33.
    Arora VK, Melton JR. Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat Commun. 2018;9:1326.CrossRefGoogle Scholar
  34. 34.
    Lasslop G, Kloster S. Human impact on wildfires varies between regions and with vegetation productivity. Environ Res Lett. 2017;12:115011.CrossRefGoogle Scholar
  35. 35.
    Landry J-S, Partanen A-I, Damon Matthews H. Carbon cycle and climate effects of forcing from fire-emitted aerosols. Environ Res Lett. 2017;12:025002.CrossRefGoogle Scholar
  36. 36.
    Jiang Y, Lu Z, Liu X, Qian Y, Zhang K, Wang Y, et al. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5. Atmos Chem Phys. 2016;16:14805–24.CrossRefGoogle Scholar
  37. 37.
    Jacobson MZ. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J Geophys Res Atmos. 2014;119:8980–9002.CrossRefGoogle Scholar
  38. 38.
    Grandey BS, Lee H-H, Wang C. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires. Atmos Chem Phys. 2016;16:14495–513.CrossRefGoogle Scholar
  39. 39.
    Voulgarakis A, Marlier ME, Faluvegi G, Shindell DT, Tsigaridis K, Mangeon S. Interannual variability of tropospheric trace gases and aerosols: the role of biomass burning emissions. J Geophys Res Atmos. 2015;120:7157–73.CrossRefGoogle Scholar
  40. 40.
    Thornhill GD, Ryder CL, Highwood EJ, Shaffrey LC, Johnson BT. The effect of South American biomass burning aerosol emissions on the regional climate. Atmos Chem Phys. 2018;18:5321–42.CrossRefGoogle Scholar
  41. 41.
    • Hodnebrog Ø, Myhre G, Forster PM, Sillmann J, Samset BH. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat Commun. 2016;7:11236 This study provides a model-based attribution of precipitation reduction to fire shows that a reduction of local biomass burning aerosol emissions may mitigate reduced rainfall.CrossRefGoogle Scholar
  42. 42.
    Tosca MG, Diner DJ, Garay MJ, Kalashnikova OV. Observational evidence of fire-driven reduction of cloud fraction in tropical Africa. J Geophys Res Atmos. 2014;119:8418–32.CrossRefGoogle Scholar
  43. 43.
    Hamilton DS, Hantson S, Scott CE, Kaplan JO, Pringle KJ, Nieradzik LP, et al. Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nat Commun. 2018;9:3182.CrossRefGoogle Scholar
  44. 44.
    van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, et al. Global fire emissions estimates during 1997–2016. Earth Syst Sci Data. 2017;9:697–720.CrossRefGoogle Scholar
  45. 45.
    Reddington CL, Spracklen DV, Artaxo P, Ridley DA, Rizzo LV, Arana A. Analysis of particulate emissions from tropical biomass burning using aglobal aerosol model and long-term surface observations. Atmos Chem Phys. 2016;16:11083–106.CrossRefGoogle Scholar
  46. 46.
    Veira A, Kloster S, Schutgens NAJ, Kaiser JW. Fire emission heights in the climate system—part 2: impact on transport, black carbon concentrations and radiation. Atmos Chem Phys. 2015;15:7173–93.CrossRefGoogle Scholar
  47. 47.
    Veira A, Lasslop G, Kloster S. Wildfires in a warmer climate: emission fluxes, emission heights, and black carbon concentrations in 2090-2099. J Geophys Res Atmos. 2016;121:3195–223.CrossRefGoogle Scholar
  48. 48.
    Boucher O, Randall D, Artaxo P, et al. Clouds and aerosols. In: Intergovernmental Panel on Climate Change, editor. Climate change 2013—the physical science basis. Cambridge: Cambridge University Press; 2014. p. 571–658.Google Scholar
  49. 49.
    Li F, Lawrence DM, Bond-Lamberty B. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environ Res Lett. 2017;12:44014.CrossRefGoogle Scholar
  50. 50.
    •• Rogers BM, Soja AJ, Goulden ML, Randerson JT. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geosci. 2015;8:228–34 They explain the variation between continents in fire regimes and fire climate impacts in the boreal regions by plant trait variation.CrossRefGoogle Scholar
  51. 51.
    • Yang J, Pan S, Dangal S, Zhang B, Wang S, Tian H. Continental-scale quantification of post-fire vegetation greenness recovery in temperate and boreal North America. Remote Sens Environ. 2017;199:277–90 This study shows that the variation in post-fire recovery can be explained by differences in vegetation composition and fire severity.CrossRefGoogle Scholar
  52. 52.
    • Chen D, Loboda TV, He T, Zhang Y, Liang S. Strong cooling induced by stand-replacing fires through albedo in Siberian larch forests. Sci Rep. 2018;8:4821 For stand-replacing fires in Siberia, the impact of fire on albedo induces a similar cooling as in North America.CrossRefGoogle Scholar
  53. 53.
    Chen D, Loboda TV. Surface forcing of non-stand-replacing fires in Siberian larch forests. Environ Res Lett. 2018;13:045008.CrossRefGoogle Scholar
  54. 54.
    Liu Z, Ballantyne AP, Cooper LA. Increases in land surface temperature in response to fire in siberian boreal forests and their attribution to biophysical processes. Geophys Res Lett. 2018;45:6485–94.CrossRefGoogle Scholar
  55. 55.
    Liu Z, Ballantyne AP, Cooper LA. Biophysical feedback of global forest fires on surface temperature. Nat Commun. 2019;10:214.CrossRefGoogle Scholar
  56. 56.
    Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci. 2011;4:27–31.CrossRefGoogle Scholar
  57. 57.
    Gibson CM, Turetsky MR, Cottenie K, Kane ES, Houle G, Kasischke ES. Variation in plant community composition and vegetation carbon pools a decade following a severe fire season in interior Alaska. J Veg Sci. 2016;27:1187–97.CrossRefGoogle Scholar
  58. 58.
    Trugman AT, Fenton NJ, Bergeron Y, Xu X, Welp LR, Medvigy D. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone. J Adv Model Earth Syst. 2016;8:1180–209.CrossRefGoogle Scholar
  59. 59.
    Alexander HD, Mack MC, Goetz S, Beck PSA, Belshe EF. Implications of increased deciduous cover on stand structure and aboveground carbon pools of Alaskan boreal forests. Ecosphere. 2012;3:45.CrossRefGoogle Scholar
  60. 60.
    Veraverbeke S, Rogers BM, Goulden ML, Jandt RR, Miller CE, Wiggins EB, et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat Clim Chang. 2017;7:529–34.CrossRefGoogle Scholar
  61. 61.
    Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. Global peatland dynamics since the Last Glacial Maximum. Geophys Res Lett. 2010;37.  https://doi.org/10.1029/2010GL043584.
  62. 62.
    Page SE, Hooijer A. In the line of fire: the peatlands of Southeast Asia. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371:20150176.  https://doi.org/10.1098/rstb.2015.0176.CrossRefGoogle Scholar
  63. 63.
    Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR, Watts A. Global vulnerability of peatlands to fire and carbon loss. Nat Geosci. 2015;8:11–4.CrossRefGoogle Scholar
  64. 64.
    •• Santín C, Doerr SH, Kane ES, Masiello CA, Ohlson M, de la Rosa JM, et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob Chang Biol. 2016;22:76–91 They review the pyrogenic carbon cycle and compiled stocks and fluxes in the global pyrogenic carbon cycle.CrossRefGoogle Scholar
  65. 65.
    Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature. 2017;542:86–90.CrossRefGoogle Scholar
  66. 66.
    Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles. 2009;23.  https://doi.org/10.1029/2008GB003327.
  67. 67.
    • Wiggins EB, Czimczik CI, Santos GM, Chen Y, Xu X, Holden SR, et al. Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proc Natl Acad Sci USA. 2018;115:12419–24 The quantification of the age of peat burning indicates how low it will take until carbon pools could recover from fire.CrossRefGoogle Scholar
  68. 68.
    Wilkinson SL, Moore PA, Flannigan MD, Wotton BM, Waddington JM. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environ Res Lett. 2018;13:014018.CrossRefGoogle Scholar
  69. 69.
    Konecny K, Ballhorn U, Navratil P, Jubanski J, Page SE, Tansey K, et al. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob Chang Biol. 2016;22:1469–80.CrossRefGoogle Scholar
  70. 70.
    Han J, Tangdamrongsub N, Hwang C, Abidin HZ. Intensified water storage loss by biomass burning in Kalimantan: detection by GRACE. J Geophys Res Solid Earth. 2017.  https://doi.org/10.1002/2017JB014129.
  71. 71.
    Gibson CM, Chasmer LE, Thompson DK, Quinton WL, Flannigan MD, Olefeldt D. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat Commun. 2018;9:3041.CrossRefGoogle Scholar
  72. 72.
    Köster E, Köster K, Berninger F, Prokushkin A, Aaltonen H, Zhou X, et al. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. J Environ Manag. 2018;228:405–15.CrossRefGoogle Scholar
  73. 73.
    Song X, Wang G, Hu Z, Ran F, Chen X. Boreal forest soil CO2 and CH4 fluxes following fire and their responses to experimental warming and drying. Sci Total Environ. 2018;644:862–72.CrossRefGoogle Scholar
  74. 74.
    Li F, Levis S, Ward DS. Quantifying the role of fire in the Earth system—part 1: improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences. 2013;10:2293–314.CrossRefGoogle Scholar
  75. 75.
    Eliseev AV, Mokhov II, Chernokulsky AV. An ensemble approach to simulate CO2 emissions from natural fires. Biogeosciences. 2014;11:3205–23.CrossRefGoogle Scholar
  76. 76.
    Wagner S, Jaffé R, Stubbins A. Dissolved black carbon in aquatic ecosystems. Limnol Oceanogr. 2018;3:168–85.CrossRefGoogle Scholar
  77. 77.
    Bird MI, Wynn JG, Saiz G, Wurster CM, McBeath A. The pyrogenic carbon cycle. Annu Rev Earth Planet Sci. 2015;43:273–98.CrossRefGoogle Scholar
  78. 78.
    Reisser M, Purves RS, Schmidt MWI, Abiven S. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front Earth Sci. 2016;4.  https://doi.org/10.3389/feart.2016.00080.
  79. 79.
    Bao H, Niggemann J, Luo L, Dittmar T, Kao S-J. Aerosols as a source of dissolved black carbon to the ocean. Nat Commun. 2017;8:510.CrossRefGoogle Scholar
  80. 80.
    Coppola AI, Ziolkowski LA, Masiello CA, Druffel ERM. Aged black carbon in marine sediments and sinking particles. Geophys Res Lett. 2014;41:2427–33.CrossRefGoogle Scholar
  81. 81.
    Coppola AI, Wiedemeier DB, Galy V, Haghipour N, Hanke UM, Nascimento GS, et al. Global-scale evidence for the refractory nature of riverine black carbon. Nat Geosci. 2018;11:584–8.CrossRefGoogle Scholar
  82. 82.
    Marques JSJ, Dittmar T, Niggemann J, Almeida MG, Gomez-Saez GV, Rezende CE. Dissolved black carbon in the headwaters-to-ocean continuum of Paraíba Do Sul River, Brazil. Front Earth Sci doi. 2017;5.  https://doi.org/10.3389/feart.2017.00011.
  83. 83.
    Coppola AI, Druffel ERM. Cycling of black carbon in the ocean. Geophys Res Lett. 2016;43:4477–82.CrossRefGoogle Scholar
  84. 84.
    Wang X, Xu C, Druffel EM, Xue Y, Qi Y. Two black carbon pools transported by the Changjiang and Huanghe Rivers in China. Glob Biogeochem Cycles. 2016;30:1778–90.CrossRefGoogle Scholar
  85. 85.
    Roebuck JA, Seidel M, Dittmar T, Jaffé R. Land use controls on the spatial variability of dissolved black carbon in a subtropical watershed. Environ Sci Technol. 2018;52:8104–14.CrossRefGoogle Scholar
  86. 86.
    Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F, Amann T, et al. Negative emissions—part 2: costs, potentials and side effects. Environ Res Lett. 2018;13:063002.CrossRefGoogle Scholar
  87. 87.
    Landry J-S, Matthews HD. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2 over past and future centuries. Glob Chang Biol. 2017;23:3205–18.CrossRefGoogle Scholar
  88. 88.
    Harrison SP, Bartlein PJ, Brovkin V, Houweling S, Kloster S, Prentice IC. The biomass burning contribution to climate–carbon-cycle feedback. Earth Syst Dynam. 2018;9:663–77.CrossRefGoogle Scholar
  89. 89.
    Giglio L, Boschetti L, Roy DP, Humber ML, Justice CO. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens Environ. 2018;217:72–85.CrossRefGoogle Scholar
  90. 90.
    Chuvieco E, Lizundia-Loiola J, Pettinari ML, Ramo R, Padilla M, Tansey K, et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst Sci Data. 2018;10:2015–31.CrossRefGoogle Scholar
  91. 91.
    Giglio L, Csiszar I, Justice CO. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J Geophys Res. 2006;111.  https://doi.org/10.1029/2005JG000142.
  92. 92.
    Kaiser JW, Heil A, Andreae MO, Benedetti A, Chubarova N, Jones L, et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences. 2012;9:527–54.CrossRefGoogle Scholar
  93. 93.
    Giglio L, Randerson JT, van der Werf GR. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J Geophys Res Biogeosci. 2013;118:317–28.CrossRefGoogle Scholar
  94. 94.
    Randerson JT, Chen Y, van der Werf GR, Rogers BM, Morton DC. Global burned area and biomass burning emissions from small fires. J Geophys Res. 2012;117:G04012.CrossRefGoogle Scholar
  95. 95.
    Goodwin NR, Collett LJ. Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia. Remote Sens Environ. 2014;148:206–21.CrossRefGoogle Scholar
  96. 96.
    White JC, Wulder MA, Hermosilla T, Coops NC, Hobart GW. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens Environ. 2017;194:303–21.CrossRefGoogle Scholar
  97. 97.
    Hawbaker TJ, Vanderhoof MK, Beal Y-J, Takacs JD, Schmidt GL, Falgout JT, et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens Environ. 2017;198:504–22.CrossRefGoogle Scholar
  98. 98.
    Verhegghen A, Eva H, Ceccherini G, Achard F, Gond V, Gourlet-Fleury S, et al. The potential of sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests. Remote Sens. 2016;8:986.CrossRefGoogle Scholar
  99. 99.
    Roteta E, Bastarrika A, Padilla M, Storm T, Chuvieco E. Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa. Remote Sens Environ. 2019;222:1–17.CrossRefGoogle Scholar
  100. 100.
    Laurent P, Mouillot F, Yue C, Ciais P, Moreno MV, Nogueira JMP. FRY, a global database of fire patch functional traits derived from space-borne burned area products. Sci Data. 2018;5:180132.CrossRefGoogle Scholar
  101. 101.
    Andela N, Morton DC, Giglio L, Paugam R, Chen Y, Hantson S, et al. The global fire atlas of individual fire size, duration, speed, and direction. Earth Syst Sci Data Discuss. 2018:1–28.  https://doi.org/10.5194/essd-2018-89.
  102. 102.
    Lohberger S, Stängel M, Atwood EC, Siegert F. Spatial evaluation of Indonesia’s 2015 fire-affected area and estimated carbon emissions using Sentinel-1. Glob Chang Biol. 2018;24:644–54.CrossRefGoogle Scholar
  103. 103.
    Atwood EC, Englhart S, Lorenz E, Halle W, Wiedemann W, Siegert F. Detection and characterization of low temperature peat fires during the 2015 fire catastrophe in Indonesia using a new high-sensitivity fire monitoring satellite sensor (FireBird). PLoS One. 2016;11:e0159410.CrossRefGoogle Scholar
  104. 104.
    Alonzo M, Morton DC, Cook BD, Andersen H-E, Babcock C, Pattison R. Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar. Environ Res Lett. 2017;12:065004.CrossRefGoogle Scholar
  105. 105.
    Chasmer LE, Hopkinson CD, Petrone RM, Sitar M. Using multitemporal and multispectral airborne lidar to assess depth of peat loss and correspondence with a new active normalized burn ratio for wildfires. Geophys Res Lett. 2017;44:11,851–9.CrossRefGoogle Scholar
  106. 106.
    Simpson J, Wooster M, Smith T, Trivedi M, Vernimmen R, Dedi R, et al. Tropical peatland burn depth and combustion heterogeneity assessed using UAV photogrammetry and airborne lidar. Remote Sens. 2016;8:1000.CrossRefGoogle Scholar
  107. 107.
    Prat-Guitart N, Rein G, Hadden RM, Belcher CM, Yearsley JM. Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires. Sci Total Environ. 2016;572:1422–30.CrossRefGoogle Scholar
  108. 108.
    Huang X, Rein G. Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply. Int J Wildland Fire. 2017;26:907.CrossRefGoogle Scholar
  109. 109.
    Lukenbach MC, Hokanson KJ, Moore PA, Devito KJ, Kettridge N, Thompson DK, et al. Hydrological controls on deep burning in a northern forested peatland. Hydrol Process. 2015;29:4114–24.CrossRefGoogle Scholar
  110. 110.
    Glukhova TV, Sirin AA. Losses of soil carbon upon a fire on a drained forested raised bog. Eurasian Soil Sc. 2018;51:542–9.CrossRefGoogle Scholar
  111. 111.
    Stavros EN, Coen J, Peterson B, Singh H, Kennedy K, Ramirez C, et al. Use of imaging spectroscopy and LIDAR to characterize fuels for fire behavior prediction. Remote Sensing Applications: Society and Environment. 2018;11:41–50.CrossRefGoogle Scholar
  112. 112.
    Veraverbeke S, Dennison P, Gitas I, Hulley G, Kalashnikova O, Katagis T, et al. Hyperspectral remote sensing of fire: state-of-the-art and future perspectives. Remote Sens Environ. 2018;216:105–21.CrossRefGoogle Scholar
  113. 113.
    van Leeuwen TT, van der Werf GR, Hoffmann AA, Detmers RG, Rücker G, French NHF, et al. Biomass burning fuel consumption rates: a field measurement database. Biogeosciences. 2014;11:7305–29.CrossRefGoogle Scholar
  114. 114.
    Rogers BM, Veraverbeke S, Azzari G, Czimczik CI, Holden SR, Mouteva GO, et al. Quantifying fire-wide carbon emissions in interior Alaska using field measurements and Landsat imagery. J Geophys Res Biogeosci. 2014;119:1608–29.CrossRefGoogle Scholar
  115. 115.
    Walker XJ, Rogers BM, Baltzer JL, Cumming SG, Day NJ, Goetz SJ, et al. Cross-scale controls on carbon emissions from boreal forest megafires. Glob Chang Biol. 2018;24:4251–65.  https://doi.org/10.1111/gcb.14287.CrossRefGoogle Scholar
  116. 116.
    Wiggins EB, Veraverbeke S, Henderson JM, Karion A, Miller JB, Lindaas J, et al. The influence of daily meteorology on boreal fire emissions and regional trace gas variability. J Geophys Res Biogeosci. 2016;121:2793–810.CrossRefGoogle Scholar
  117. 117.
    Marlon JR, Kelly R, Daniau A-L, Vannière B, Power MJ, Bartlein P, et al. Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons. Biogeosciences. 2016;13:3225–44.CrossRefGoogle Scholar
  118. 118.
    van Marle MJE, Kloster S, Magi BI, Marlon JR, Daniau AL, Field RD, et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci Model Dev. 2017;10:3329–57.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
  2. 2.Department of GeographyUniversity of ZurichZurichSwitzerland
  3. 3.Department of PhysicsImperial College LondonLondonUK
  4. 4.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingPeople’s Republic of China
  5. 5.Vrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations