Advertisement

Current Climate Change Reports

, Volume 5, Issue 2, pp 63–79 | Cite as

Monsoon Responses to Climate Changes—Connecting Past, Present and Future

  • Anji SethEmail author
  • Alessandra Giannini
  • Maisa Rojas
  • Sara A. Rauscher
  • Simona Bordoni
  • Deepti Singh
  • Suzana J. Camargo
Climate Change and Atmospheric Circulation (R Chadwick, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Climate Change and Atmospheric Circulation

Abstract

Purpose of Review

Knowledge of how monsoons will respond to external forcings through the twenty-first century has been confounded by incomplete theories of tropical climate and insufficient representation in climate models. This review highlights recent insights from past warm climates and historical trends that can inform our understanding of monsoon evolution in the context of an emerging energetic framework.

Recent Findings

Projections consistent with paleoclimate evidence and theory indicate expanded/wetter monsoons in Africa and Asia, with continued uncertainty in the Americas. Twentieth century observations are not congruent with expectations of monsoon responses to radiative forcing from greenhouse gases, due to the confounding effect of aerosols. Lines of evidence from warm climate analogues indicate that while monsoons respond in globally coherent and predictable ways to orbital forcing and inter-hemispheric thermal gradients, there are differences in response to these forcings and also between land and ocean.

Summary

Further understanding of monsoon responses to climate change will require refinement of the energetic framework to incorporate zonal asymmetries and the use of model hierarchies.

Keywords

Monsoons Global warming Climate changes Paleomonsoons 

Notes

Acknowledgements

We thank the editor, Robin Chadwick, and two anonymous reviewers for constructive critiques that have shaped the structure and improved the clarity of this review. Conversations with Michela Biasutti were essential in the development of this review. We acknowledge the CESM Large Ensemble Community Project and supercomputing resources provided by NSF/CISL/Yellowstone. CMAP and GPCP precipitation data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, and acquired from their Web site at https://www.esrl.noaa.gov/psd/.

Funding Information

The authors acknowledge grant support as follows: A.S. acknowledges NSF support from CAREER-1056216, S.B. acknowledges support by NSF under award AGS-1462544, S.J.C. acknowledges NOAA support from awards NA15OAR43100095, NA16OAR4310079, NA18OAR4310277, S.A.R. acknowledges support from the University of Delaware Research Foundation from award GEOG45212717000, and M.R. acknowledges Fondecyt 1171773, Nucleo Milenio PaleoClimate and FONDAP/ CONICYT 15110009.

Compliance with Ethical Standards

Conflict of interest

The authors declare they have no conflicts of interest.

References

  1. 1.
    Trenberth KE, Stepaniak DP, Caron JM. The global monsoon as seen through the divergent atmospheric circulation. J. Climate 2000;13(22):3969–3993.  https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2.Google Scholar
  2. 2.
    Mohtadi M, Prange M, Steinke S. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 2016;533:191–199.  https://doi.org/10.1038/nature17450.Google Scholar
  3. 3.
    Wang P, Wang B, Cheng H, Fasullo J, Guo Z, Kiefer T, Liu Z. The global monsoon across time scales: mechanisms and outstanding issues. Earth-Science Rev. 2017;174:84–121.  https://doi.org/10.1016/j.earscirev.2017.07.006.Google Scholar
  4. 4.
    Biasutti M, Voigt A, Boos WR, Braconnot P, Hargreaves JC, Harrison SP, Kang SM, Mapes BE, Scheff J, Schumacher C, Sobel AH, Xie SP. Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci. 2018;11(6): 392–400.  https://doi.org/10.1038/s41561-018-0137-1.Google Scholar
  5. 5.
    Schneider T, Bischoff T, Haug GH. Migrations and dynamics of the intertropical convergence zone. Nature 2014;513:45–53.  https://doi.org/10.1038/nature13636.Google Scholar
  6. 6.
    Emanuel KA. On thermally direct circulations in moist atmospheres. J. Atmos. Sci. 1995;52(9):1529–1534.Google Scholar
  7. 7.
    Privé N.C., Plumb RA. Monsoon dynamics with interactive forcing. Part II: impact of eddies and asymmetric geometries. J. Atmos. Sci. 2007;64(5):1431–1442.Google Scholar
  8. 8.
    Pascale S, Boos WR, Bordoni S, Delworth TL, Kapnick SB, Murakami H, Vecchi GA, Zhang W. Weakening of the North American monsoon with global warming. Nat. Clim. Change 2017;7:806–812.  https://doi.org/10.1038/nclimate3412.Google Scholar
  9. 9.
    Hurley JV, Boos WR. Interannual variability of monsoon precipitation and local subcloud equivalent potential temperature. J. Climate 2013;26(23):9507–9527.  https://doi.org/10.1175/JCLI-D-12-00229.1.Google Scholar
  10. 10.
    Walker JM, Bordoni S, Schneider T. Interannual variability in the large-scale dynamics of the South Asian summer monsoon. J Climate 2015;28(9):3731–3750.  https://doi.org/10.1175/JCLI-D-14-00612.1.Google Scholar
  11. 11.
    Kang SM, Held IM, Frierson DMW, Zhao M. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Climate 2008;21(14):3521–3532.  https://doi.org/10.1175/2007JCLI2146.1.Google Scholar
  12. 12.
    Kang SM, Frierson DMW, Held IM. The tropical response to extratropical thermal forcing in an idealized GCM: the importance of radiative feedbacks and convective parameterization. J. Atmos. Sci. 2009;66(9): 2812–2827.  https://doi.org/10.1175/2009JAS2924.1.Google Scholar
  13. 13.
    Frierson DMW, Hwang YT. Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate 2011;25(2):720–733.  https://doi.org/10.1175/JCLI-D-11-00116.1.Google Scholar
  14. 14.
    Braconnot P, Marzin C, Grégoire L., Mosquet E, Marti O. Monsoon response to changes in Earth’s orbital parameters: comparisons between simulations of the Eemian and of the Holocene . Clim. Past 2008;4 (2):459–493.  https://doi.org/10.5194/cp-4-281-2008.Google Scholar
  15. 15.
    Zhao Y, Harrison SP. Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks. Clim. Dyn. 2012;39(6): 1457–1487.  https://doi.org/10.1007/s00382-011-1193-z.Google Scholar
  16. 16.
    Chiang JCH, Friedman AR. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci 2012;40(1):383–412.  https://doi.org/10.1146/annurev-earth-042711-105545.Google Scholar
  17. 17.
    Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 2012;93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1.Google Scholar
  18. 18.
    Friedman AR, Hwang YT, Chiang JCH, Frierson DMW. Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Climate 2013;26(15):5419–5433.  https://doi.org/10.1175/JCLI-D-12-00525.1.Google Scholar
  19. 19.
    Donohoe A, Marshall J, Ferreira D, Mcgee D. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the last glacial maximum. J. Climate 2012; 26(11):3597–3618.  https://doi.org/10.1175/JCLI-D-12-00467.1.Google Scholar
  20. 20.
    Seo J, Kang SM, Merlis TM. A model intercomparison of the tropical precipitation response to a CO2 doubling in aquaplanet simulations. Geophys. Res. Lett 2016;44(2):993–1000.  https://doi.org/10.1002/2016GL072347.Google Scholar
  21. 21.
    Wei H, Bordoni S. Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J. Adv. Model. Earth Syst 2018;10:1708–1725.  https://doi.org/10.1029/2018MS001313.Google Scholar
  22. 22.
    Singarayer JS, Valdes PJ, Roberts WHG. Ocean dominated expansion and contraction of the late Quaternary tropical rainbelt. Sci. Rep 2017;7(1):9382.  https://doi.org/10.1038/s41598-017-09816-8.Google Scholar
  23. 23.
    Roberts WHG, Valdes PJ, Singarayer JS. Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics?. Geophys. Res. Lett. 2017;44(12):6373–6382.  https://doi.org/10.1002/2017GL073103.Google Scholar
  24. 24.
    Adam O, Bischoff T, Schneider T. Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. J. Climate 2016;29(20):7281–7293.  https://doi.org/10.1175/JCLI-D-15-0710.1.Google Scholar
  25. 25.
    Boos WR, Korty RL. Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci 2016; 9: 892–897.  https://doi.org/10.1038/ngeo2833 .Google Scholar
  26. 26.
    Zhisheng A, Guoxiong W, Jianping L, Youbin S, Yimin L, Weijian Z, Yanjun C, Anmin D, Li L, Jiangyu M, Hai C, Zhengguo S, Liangcheng T, Hong Y, Hong A, Hong C, Juan F. Global monsoon dynamics and climate change. Annu Rev Earth Planet. Sci. 2015;43(1):29–77.  https://doi.org/10.1146/annurev-earth-060313-054623 .Google Scholar
  27. 27.
    Boos WR, Kuang Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 2010;463:218–222.  https://doi.org/10.1038/nature08707.Google Scholar
  28. 28.
    Yihui D, Chan JC. The East Asian summer monsoon: an overview. Meteorol. Atmos. Phys 2005;89(1-4): 117–142.Google Scholar
  29. 29.
    Nicholson SE. A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Clim. Dyn 2009;32(7-8):1155–1171.Google Scholar
  30. 30.
    Douglas MW, Maddox RA, Howard K, Reyes S. The Mexican monsoon. J Climate 1993;6(8):1665–1677.  https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.Google Scholar
  31. 31.
    Adams DK, Comrie AC. The North American monsoon. Bull. Amer. Meteor. Soc 1997; 78 (10): 2197–2214.  https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.Google Scholar
  32. 32.
    Zhou J, Lau KM. Does a monsoon climate exist over South America? J Climate 1998; 11(5):1020–1040.  https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2.Google Scholar
  33. 33.
    Gan MA, Kousky VE, Ropelewski CF. The South America monsoon circulation and its relationship to rainfall over west-central Brazil. J. Climate 2004;17(1):47–66.  https://doi.org/10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2.Google Scholar
  34. 34.
    Foster GL, Royer DL, Lunt DJ. Future climate forcing potentially without precedent in the last 420 million years. Nature Comm 2017;8(14):845.Google Scholar
  35. 35.
    Zhang YG, Pagani M, Liu Z, Bohaty SM, DeConto R. A 40-million-year history of atmospheric CO2. Phil. Trans. R. Soc. A 2013;371(2001):20130,096.Google Scholar
  36. 36.
    Masson-Delmotte V. Coauthors, 2013: Information from paleoclimate archives. Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment Report of the Intergovernmental Panel on Climate Change, TF Stocker et al. Cambridge: Cambridge University Press; 2013. p. 383–464.Google Scholar
  37. 37.
    Marshall J, Donohoe A, Ferreira D, McGee D. The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Clim. Dyn 2014;42(7):1967–1979.  https://doi.org/10.1007/s00382-013-1767-z.Google Scholar
  38. 38.
    Byrne MP, O’Gorman PA. Land–ocean warming contrast over a wide range of climates: convective quasi-equilibrium theory and idealized simulations. J. Climate 2012;26(12):4000–4016.  https://doi.org/10.1175/JCLI-D-12-00262.1.Google Scholar
  39. 39.
    Byrne MP, Schneider T. Narrowing of the itcz in a warming climate: physical mechanisms. Geophys. Res. Lett. 2016;43(21):11,350–11,357.  https://doi.org/10.1002/2016GL070396.Google Scholar
  40. 40.
    Clemens SC, Murray DW, Prell WL. Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 1996;274(5289):943–948.Google Scholar
  41. 41.
    Liu T, Ding Z. Chinese loess and the paleomonsoon. Ann. Rev. Earth Planet. Sci 1998;26(1):111–145.Google Scholar
  42. 42.
    Wang P, Clemens S, Beaufort L, Braconnot P, Ganssen G, Jian Z, Kershaw P, Sarnthein M. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quaternary Sci. Rev 2005;24(5-6):595–629.Google Scholar
  43. 43.
    Dowsett HJ, Robinson MM. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective. Philos. T. Roy. Soc. A 2009;367(1886):109–125.Google Scholar
  44. 44.
    Lawrence KT, Liu Z, Herbert TD. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 2006;312(5770):79–83.Google Scholar
  45. 45.
    Wara MW, Ravelo AC, Delaney ML. Permanent El Niño-like conditions during the Pliocene warm period. Science 2005;309(5735):758–761.Google Scholar
  46. 46.
    Haywood A, Hill D, Dolan A, Otto-Bliesner B, Bragg F, Chan WL, Chandler M, Contoux C, Dowsett H, Jost A, et al. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past 2013;9(1):191–209.Google Scholar
  47. 47.
    Sun Y, Ramstein G, Contoux C, Zhou T. A comparative study of large-scale atmospheric circulation in the context of a future scenario (RCP4.5) and past warmth (mid-Pliocene). Clim. Past 2013;9(4): 1613–1627.  https://doi.org/10.5194/cp-9-1613-2013.Google Scholar
  48. 48.
    Corvec S, Fletcher CG. Changes to the tropical circulation in the mid-pliocene and their implications for future climate. Clim. Past 2017;13(2):135–147.Google Scholar
  49. 49.
    Sun Y, Zhou T, Ramstein G, Contoux C, Zhang Z. Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Clim Dyn 2016;46(5):1437–1457.  https://doi.org/10.1007/s00382-015-2656-4.Google Scholar
  50. 50.
    Zhang R, Jiang D, Zhang Z. Causes of mid-Pliocene strengthened summer and weakened winter monsoons over East Asia. Adv. Atmos. Sci 2015;32(7):1016–1026.Google Scholar
  51. 51.
    Sun Y, Ramstein G, Li LZX, Contoux C, Tan N, Zhou T. Quantifying East Asian summer monsoon dynamics in the ECP4.5 scenario with reference to the mid-Piacenzian warm period. Geophys Res Lett 2018;45(22):12,523–12,533.  https://doi.org/10.1029/2018GL080061.Google Scholar
  52. 52.
    Burls NJ, Fedorov AV. Simulating Pliocene warmth and a permanent El Niño-like state: the role of cloud albedo. Paleoceanography 2014;29(10):893–910.  https://doi.org/10.1002/2014PA002644.Google Scholar
  53. 53.
    He J, Soden BJ. Anthropogenic weakening of the tropical circulation: the relative roles of direct CO2 forcing and sea surface temperature change. J. Climate 2015;28(22):8728–8742.  https://doi.org/10.1175/JCLI-D-15-0205.1.Google Scholar
  54. 54.
    Ferrett S, Collins M, Ren HL. Diagnosing relationships between mean state biases and El Niño shortwave feedback in CMIP5 models. J. Climate 2017;31(4):1315–1335.  https://doi.org/10.1175/JCLI-D-17-0331.1.Google Scholar
  55. 55.
    Hoffman JS, Clark PU, Parnell AC, He F. Regional and global sea-surface temperatures during the last interglaciation. Science 2017;355(6322):276–279.Google Scholar
  56. 56.
    Otto-Bliesner BL, Rosenbloom N, Stone EJ, McKay NP, Lunt DJ, Brady EC, Overpeck JT. How warm was the last interglacial? New model–data comparisons. Philos Trans A Math Phys Eng Sci 2013; 371:2001.  https://doi.org/10.1098/rsta.2013.0097.Google Scholar
  57. 57.
    Kathayat G, Cheng H, Sinha A, Spötl C, Edwards RL, Zhang H, Li X, Yi L, Ning Y, Cai Y, et al. Indian monsoon variability on millennial-orbital timescales. Sci. Rep. 2016;6(24):374.Google Scholar
  58. 58.
    Govin A, Varma V, Prange M. Astronomically forced variations in western African rainfall (21 N–20 S) during the Last Interglacial period. Geophys Res Lett 2014;41(6):2117–2125.Google Scholar
  59. 59.
    Baker PA, Fritz SC. Nature and causes of Quaternary climate variation of tropical South America. Quat Sci Rev 2015;124:31–47.  https://doi.org/10.1016/j.quascirev.2015.06.011.Google Scholar
  60. 60.
    Burns SJ, Kanner LC, Cheng H, Lawrence Edwards R. A tropical speleothem record of glacial inception, the South American Summer Monsoon from 125 to 115 ka. Clim Past 2015;11(6):931–938.Google Scholar
  61. 61.
    Pedersen RA, Langen PL, Vinther BM. The last interglacial climate: comparing direct and indirect impacts of insolation changes. Clim Dyn 2017;48(9-10):3391–3407.Google Scholar
  62. 62.
    Gierz P, Werner M, Lohmann G. Simulating climate and stable water isotopes during the Last Interglacial using a coupled climate-isotope model. J Adv Model Earth Sys 2017;9(5):2027–2045.Google Scholar
  63. 63.
    Garcin Y, Vincens A, Williamson D, Buchet G, Guiot J. Abrupt resumption of the African Monsoon at the Younger Dryas–Holocene climatic transition. Quat Sci Rev 2007;26(5-6):690–704.Google Scholar
  64. 64.
    Shekhar R, Boos WR. Improving energy-based estimates of monsoon location in the presence of proximal deserts. J Climate 2016;29(13):4741–4761.  https://doi.org/10.1175/JCLI-D-15-0747.1.Google Scholar
  65. 65.
    Wang X, Auler AS, Edwards RL, Cheng H, Ito E, Solheid M. Interhemispheric anti-phasing of rainfall during the last glacial period. Quat Sci Rev 2006;25(23-24):3391–3403.Google Scholar
  66. 66.
    Kuechler RR, Dupont LM, Schefuay E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim Past 2018;14(1):73–84.  https://doi.org/10.5194/cp-14-73-2018.Google Scholar
  67. 67.
    McGee D, Donohoe A, Marshall J, Ferreira D. Changes in itcz location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene . Earth Planet Sci. Lett 2014;390: 69–79.Google Scholar
  68. 68.
    Kageyama M, Merkel U, Otto-Bliesner B, Prange M, Abe-Ouchi A, Lohmann G, Ohgaito R, Roche D, Singarayer J, Swingedouw D, et al. Climatic impacts of fresh water hosing under last glacial maximum conditions: a multi-model study. Clim Past 2013;9(2):935–953.Google Scholar
  69. 69.
    Ma J, Xie SP. Regional patterns of sea surface temperature change: a source of uncertainty in future projections of precipitation and atmospheric circulation. J Climate 2012;26(8):2482–2501.  https://doi.org/10.1175/JCLI-D-12-00283.1.Google Scholar
  70. 70.
    Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski W, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver A, Wehner M. Long-term climate change: projections, commitments and irreversibility. Climate change 2013: the physical science basis. IPCC Working Group I Contribution to the 5th assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013.Google Scholar
  71. 71.
    Jiang D, Tian Z, Lang X. Mid-Holocene global monsoon area and precipitation from PMIP simulations. Clim Dyn 2015;44(9):2493–2512.  https://doi.org/10.1007/s00382-014-2175-8.Google Scholar
  72. 72.
    Braconnot P, Harrison SP, Kageyama M, Bartlein PJ, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner B, Zhao Y. Evaluation of climate models using palaeoclimatic data. Nat Clim Change 2012;2: 417–424.  https://doi.org/10.1038/nclimate1456.Google Scholar
  73. 73.
    Harrison SP, Bartlein PJ, Izumi K, Li G, Annan J, Hargreaves J, Braconnot P, Kageyama M. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat Clim Change 2015;5: 735–743.  https://doi.org/10.1038/nclimate2649.Google Scholar
  74. 74.
    D’Agostino R, Bader J, Bordoni S, Ferreira D, Jungclaus J. 2019. Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induces global warming. Geophys Res Lett. In press.Google Scholar
  75. 75.
    Metcalfe SE, Barron JA, Davies SJ. The Holocene history of the North American monsoon: “known knowns” and “known unknowns” in understanding its spatial and temporal complexity. Quat Sci Rev 2015;120:1–27.  https://doi.org/10.1016/j.quascirev.2015.04.004.Google Scholar
  76. 76.
    Prado LF, Wainer I, Chiessi CM. Mid-Holocene PMIP3/CMIP5 model results: intercomparison for the South American monsoon system. Holocene 2013;23(12):1915–1920.  https://doi.org/10.1177/0959683613505336.Google Scholar
  77. 77.
    Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 2012;484:228–232.  https://doi.org/10.1038/nature10946.Google Scholar
  78. 78.
    Clement A, Bellomo K, Murphy LN, Cane MA, Mauritsen T, Rädel G, Stevens B. The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science 2015;350(6258):320.Google Scholar
  79. 79.
    Wang B, Ding Q. Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett 2006; 33:6.  https://doi.org/10.1029/2005GL025347.Google Scholar
  80. 80.
    Hsu PC, Li T, Wang B. Trends in global monsoon area and precipitation over the past 30 years. Geophys Res Lett 2011;38(8):L08,701.  https://doi.org/10.1029/2011GL046893.Google Scholar
  81. 81.
    Lin R, Zhou T, Qian Y. Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J Climate 2013;27(3):1271–1289.  https://doi.org/10.1175/JCLI-D-13-00215.1.Google Scholar
  82. 82.
    Zhou T, Zhang L, Li H. 2008. Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophys Res Lett 35(16).Google Scholar
  83. 83.
    Polson D, Bollasina M, Hegerl GC, Wilcox LJ. Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys Res Lett 2014;41(16):6023–6029.  https://doi.org/10.1002/2014GL060811.Google Scholar
  84. 84.
    Ackerley D, Booth BBB, Knight SHE, Highwood EJ, Frame DJ, Allen MR, Rowell DP. Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and CO2 forcing. J Climate 2011; 24 (19): 4999–5014.  https://doi.org/10.1175/JCLI-D-11-00019.1.Google Scholar
  85. 85.
    Kang SM, Held IM. Tropical precipitation, SSTs and the surface energy budget: a zonally symmetric perspective. Clim Dyn 2012;38(9):1917–1924.  https://doi.org/10.1007/s00382-011-1048-7.Google Scholar
  86. 86.
    Bischoff T, Schneider T. Energetic constraints on the position of the Intertropical Convergence Zone. J Climate 2014;27(13):4937–4951.  https://doi.org/10.1175/JCLI-D-13-00650.1.Google Scholar
  87. 87.
    Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci 2005;102(15):5326.  https://doi.org/10.1073/pnas.0500656102.Google Scholar
  88. 88.
    Singh D, Tsiang M, Rajaratnam B, Diffenbaugh NS. Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat Clim Change 2014;4:456–461.  https://doi.org/10.1038/nclimate2208.Google Scholar
  89. 89.
    Chung CE, Ramanathan V. Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Climate 2006;19(10):2036–2045.  https://doi.org/10.1175/JCLI3820.1.Google Scholar
  90. 90.
    Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun 2015;6:7423.  https://doi.org/10.1038/ncomms8423.Google Scholar
  91. 91.
    Bollasina MA, Ming Y, Ramaswamy V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 2011;334(6055):502.  https://doi.org/10.1126/science.1204994.Google Scholar
  92. 92.
    Salzmann M, Weser H, Cherian R. Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models. J Geophys Res Atmos 2014;119(19):11,321–11,337.  https://doi.org/10.1002/2014JD021783.Google Scholar
  93. 93.
    Guo L, Turner AG, Highwood EJ. Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models . Atmos Chem Phys 2015;15(11):6367–6378.  https://doi.org/10.5194/acp-15-6367-2015.Google Scholar
  94. 94.
    Paul S, Ghosh S, Oglesby R, Pathak A, Chandrasekharan A, Ramsankaran R. Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci Rep 2016;6:32,177.  https://doi.org/10.1038/srep32177.Google Scholar
  95. 95.
    Jin Q, Wang C. A revival of Indian summer monsoon rainfall since 2002. Nat Clim Change 2017;7:587–594.  https://doi.org/10.1038/nclimate3348.Google Scholar
  96. 96.
    Zhu C, Wang B, Qian W, Zhang B. 2012. Recent weakening of northern East Asian summer monsoon: a possible response to global warming. Geophys Res Lett 39(9).Google Scholar
  97. 97.
    Zhou T, Gong D, Li J, Li B. Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon–recent progress and state of affairs. Meteorol Z 2009;18(4):455–467.Google Scholar
  98. 98.
    Zhang L, Zhou T. An assessment of monsoon precipitation changes during 1901–2001. Clim Dyn 2011;37 (1-2):279–296.Google Scholar
  99. 99.
    Ding Y, Sun Y, Wang Z, Zhu Y, Song Y. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. Int J Climatol 2009;29 (13):1926–1944.  https://doi.org/10.1002/joc.1759.Google Scholar
  100. 100.
    Qian C, Zhou T. Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010. J Climate 2013;27(3):1210–1222.  https://doi.org/10.1175/JCLI-D-13-00235.1.Google Scholar
  101. 101.
    Song F, Zhou T, Qian Y. Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys Res Lett 2014;41(2):596–603.  https://doi.org/10.1002/2013GL058705.Google Scholar
  102. 102.
    Li Z, Lau WKM, Ramanathan V, Wu G, Ding Y, Manoj MG, Liu J, Qian Y, Li J, Zhou T, Fan J, Rosenfeld D, Ming Y, Wang Y, Huang J, Wang B, Xu X, Lee SS, Cribb M, Zhang F, Yang X, Zhao C, Takemura T, Wang K, Xia X, Yin Y, Zhang H, Guo J, Zhai PM, Sugimoto N, Babu SS, Brasseur GP. Aerosol and monsoon climate interactions over Asia. Rev Geophys 2016;54(4):866–929.  https://doi.org/10.1002/2015RG000500.Google Scholar
  103. 103.
    Nicholson S. On the question of the “recovery” of the rains in the West African Sahel. J Arid Environ 2005; 63(3):615–641.  https://doi.org/10.1016/j.jaridenv.2005.03.004.Google Scholar
  104. 104.
    Biasutti M, Sobel AH. Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophys Res Lett 2009;36:23 .  https://doi.org/10.1029/2009GL041303.Google Scholar
  105. 105.
    Biasutti M. Forced Sahel rainfall trends in the CMIP5 archive. J Geophys Res Atmos 2013;118(4):1613–1623.  https://doi.org/10.1002/jgrd.50206.Google Scholar
  106. 106.
    Giannini A, Salack S, Lodoun T, Ali A, Gaye AT, Ndiaye O. A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Env Res Lett 2013;8(2):024,010.  https://doi.org/10.1088/1748-9326/8/2/024010.Google Scholar
  107. 107.
    Wang H, Xie S, Tokinaga H, Liu Q, Kosaka Y. Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing. Geophys Res Lett 2016;43(7):3444–3450 .  https://doi.org/10.1002/2016GL068521.Google Scholar
  108. 108.
    Seager R, Vecchi GA. Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc Natl Acad Sci 2010;107(50):21,277–21,282.Google Scholar
  109. 109.
    Torres-Alavez A, Cavazos T, Turrent C. Land–sea thermal contrast and intensity of the North American monsoon under climate change conditions. J Climate 2014;27(12):4566–4580.  https://doi.org/10.1175/JCLI-D-13-00557.1.Google Scholar
  110. 110.
    Petrie MD, Collins SL, Gutzler DS, Moore DM. Regional trends and local variability in monsoon precipitation in the northern Chihuahuan desert. USA J Arid Env 2014;103:63–70.  https://doi.org/10.1016/j.jaridenv.2014.01.005.Google Scholar
  111. 111.
    Hoell A, Funk C, Barlow M, Shukla S. Recent and possible future variations in the North American monsoon. The Monsoons and Climate Change: observations and modeling. In: de Carvalho L and Jones C, editors. Springer International Publishing; 2016. p. 149–162,  https://doi.org/10.1007/978-3-319-21650-8_7.
  112. 112.
    McKendry IG, Gutzler DS. A possible link between wildfire aerosol and North American Monsoon precipitation in Arizona–New Mexico. Int J Climatol 2014;35(10):3178–3184.  https://doi.org/10.1002/joc.4195.Google Scholar
  113. 113.
    Skansi MDLM, Brunet M, Sigró J, Aguilar E, Arevalo Groening JA, Bentancur OJ, Castellón Geier Y.R, Correa Amaya RL, Jácome H, Malheiros Ramos A, Oria Rojas C, Pasten AM, Sallons Mitro S, Villaroel Jiménez C, Martínez R, Alexander LV, Jones PD. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global Planet Change 2013;100:295–307.  https://doi.org/10.1016/j.gloplacha.2012.11.004.Google Scholar
  114. 114.
    Grimm AM, Saboia JPJ. Interdecadal variability of the South American precipitation in the monsoon season. J Climate 2014;28(2):755–775.  https://doi.org/10.1175/JCLI-D-14-00046.1.Google Scholar
  115. 115.
    de Carvalho LMV, Cavalcanti IFA. The South American monsoon system (SAMS). The monsoons and climate change: observations and modeling. In: de Carvalho LMV and Jones C, editors. Cham: Springer International Publishing; 2016. p. 121–148,  https://doi.org/10.1007/978-3-319-21650-8_6.
  116. 116.
    Gonzalez PL, Polvani LM, Seager R, Correa GJ. Stratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South America. Clim Dyn 2014;42(7-8):1775–1792.Google Scholar
  117. 117.
    Arias PA, Fu R, Mo KC. Decadal variation of rainfall seasonality in the North American monsoon region and its potential causes. J Climate 2012;25(12):4258–4274.  https://doi.org/10.1175/JCLI-D-11-00140.1.Google Scholar
  118. 118.
    Fernandes K, Giannini A, Verchot L, Baethgen W, Pinedo-Vasquez M. Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations. Geophys Res Lett 2015;42(16):6793–6801.  https://doi.org/10.1002/2015GL063911.Google Scholar
  119. 119.
    Hsu PC, Li T, Murakami H, Kitoh A. Future change of the global monsoon revealed from 19 CMIP5 models. J Geophys Res Atmos 2013;118(3):1247–1260.  https://doi.org/10.1002/jgrd.50145.Google Scholar
  120. 120.
    Kitoh A, Endo H, Krishna Kumar K, Cavalcanti IFA, Goswami P, Zhou T. Monsoons in a changing world: a regional perspective in a global context. J Geophys Res Atmos 2013;118(8):3053–3065.  https://doi.org/10.1002/jgrd.50258.Google Scholar
  121. 121.
    Lee JY, Wang B. Future change of global monsoon in the CMIP5. Clim Dyn 2014;42(1):101–119.  https://doi.org/10.1007/s00382-012-1564-0.Google Scholar
  122. 122.
    Dwyer JG, Biasutti M, Sobel AH. The effect of greenhouse gas–induced changes in SST on the annual cycle of zonal mean tropical precipitation. J Climate 2014;27(12):4544–4565.  https://doi.org/10.1175/JCLI-D-13-00216.1.Google Scholar
  123. 123.
    Wang B, Yim SY, Lee JY, Liu J, Ha KJ. Future change of Asian-Australian monsoon under RCP4.5 anthropogenic warming scenario. Clim Dyn 2014;42(1):83–100.  https://doi.org/10.1007/s00382-013-1769-x.Google Scholar
  124. 124.
    Sandeep S, Ajayamohan RS. Poleward shift in Indian summer monsoon low level jetstream under global warming. Clim Dyn 2015;45(1):337–351.  https://doi.org/10.1007/s00382-014-2261-y.Google Scholar
  125. 125.
    Sandeep S, Ajayamohan RS, Boos WR, Sabin TP, Praveen V. Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate. Proc Natl Acad Sci 2018;115(11):2681.  https://doi.org/10.1073/pnas.1709031115.Google Scholar
  126. 126.
    Chen X, Zhou T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys Res Lett 2015;42(21):9433–9439.Google Scholar
  127. 127.
    Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell J, Stouffer R, Taylor K. The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Amer Meteor Soc 2007;88: 1383–1394.  https://doi.org/10.1175/BAMS-88-9-1383.Google Scholar
  128. 128.
    Hill SA, Ming Y, Held IM, Zhao M. A moist static energy budget–based analysis of the Sahel rainfall response to uniform oceanic warming. J Climate 2017;30(15):5637–5660.  https://doi.org/10.1175/JCLI-D-16-0785.1.Google Scholar
  129. 129.
    Chang CY, Chiang JCH, Wehner MF, Friedman AR, Ruedy R. Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J Climate 2010;24(10):2540–2555.  https://doi.org/10.1175/2010JCLI4065.1.Google Scholar
  130. 130.
    Cook BI, Seager R. The response of the North American monsoon to increased greenhouse gas forcing. J Geophys Res Atmos 2013;118(4):1690–1699.  https://doi.org/10.1002/jgrd.50111.Google Scholar
  131. 131.
    Maloney ED, Camargo SJ, Chang E, Colle B, Fu R, Geil KL, Hu Q, Jiang X, Johnson N, Karnauskas KB, Kinter J, Kirtman B, Kumar S, Langenbrunner B, Lombardo K, Long LN, Mariotti A, Meyerson JE, Mo KC, Neelin JD, Pan Z, Seager R, Serra Y, Seth A, Sheffield J, Stroeve J, Thibeault J, Xie SP, Wang C, Wyman B, Zhao M. North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J Climate 2013; 27(6):2230–2270.  https://doi.org/10.1175/JCLI-D-13-00273.1.Google Scholar
  132. 132.
    Giannini A. Mechanisms of climate change in the semiarid African Sahel: the local view. J Climate 2010;23 (3):743–756.  https://doi.org/10.1175/2009JCLI3123.1.Google Scholar
  133. 133.
    Seth A, Rauscher SA, Rojas M, Giannini A, Camargo SJ. Enhanced spring convective barrier for monsoons in a warmer world Clim Chang 2011;104(2):403–414.  https://doi.org/10.1007/s10584-010-9973-8.Google Scholar
  134. 134.
    Seth A, Rauscher SA, Biasutti M, Giannini A, Camargo SJ, Rojas M. CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J Climate 2013;26(19):7328–7351.  https://doi.org/10.1175/JCLI-D-12-00726.1.Google Scholar
  135. 135.
    Jones C, Carvalho LMV. Climate change in the South American monsoon system: present climate and CMIP5 projections. J Climate 2013;26(17):6660–6678.  https://doi.org/10.1175/JCLI-D-12-00412.1.Google Scholar
  136. 136.
    Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci 2013;6:447–451.  https://doi.org/10.1038/ngeo1799.Google Scholar
  137. 137.
    Bony S, Stevens B, Frierson DMW, Jakob C, Kageyama M, Pincus R, Shepherd TG, Sherwood SC, Siebesma AP, Sobel AH, Watanabe M, Webb MJ. Clouds, circulation and climate sensitivity. Nat Geosci 2015;8:261–268.  https://doi.org/10.1038/ngeo2398;.Google Scholar
  138. 138.
    Collins M, Minobe S, Barreiro M, Bordoni S, Kaspi Y, Kuwano-Yoshida A, Keenlyside N, Manzini E, O’Reilly CH, Sutton R, Xie SP, Zolina O. Challenges and opportunities for improved understanding of regional climate dynamics. Nat Clim Change 2018;8(2):101–108.  https://doi.org/10.1038/s41558-017-0059-8.Google Scholar
  139. 139.
    Jeevanjee N, Hassanzadeh P, Hill S, Sheshadri A. A perspective on climate model hierarchies. J Adv Model Earth Syst 2017;9(4):1760–1771.  https://doi.org/10.1002/2017MS001038.Google Scholar
  140. 140.
    Faulk S, Mitchell J, Bordoni S. Effects of rotation rate and seasonal forcing on the ITCZ extent in planetary atmospheres. J Atmos Sci 2016;74(3):665–678.  https://doi.org/10.1175/JAS-D-16-0014.1.Google Scholar
  141. 141.
    Voigt A, Biasutti M, Scheff J, Bader J, Bordoni S, Codron F, Dixon RD, Jonas J, Kang SM, Klingaman NP, Leung R, Lu J, Mapes B, Maroon EA, McDermid S, Park JY, Roehrig R, Rose BEJ, Russell GL, Seo J, Toniazzo T, Wei HH, Yoshimori M. Vargas Zeppetello, L.R.: The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP. J Adv Model Earth Syst 2016;8(4):1868–1891.  https://doi.org/10.1002/2016MS000748.Google Scholar
  142. 142.
    Levine XJ, Boos WR. A mechanism for the response of the zonally asymmetric subtropical hydrologic cycle to global warming. J Climate 2016;29(21):7851–7867.  https://doi.org/10.1175/JCLI-D-15-0826.1.Google Scholar
  143. 143.
    Schneider T. Feedback of atmosphere-ocean coupling on shifts of the intertropical convergence zone. Geophys Res Lett 2017;44(22):11,644–11,653.  https://doi.org/10.1002/2017GL075817.Google Scholar
  144. 144.
    Green B, Marshall J. Coupling of trade winds with ocean circulation damps ITCZ shifts. J Climate 2017; 30(12):4395–4411.  https://doi.org/10.1175/JCLI-D-16-0818.1.Google Scholar
  145. 145.
    Kang SM, Shin Y, Xie SP. Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection. npj Clim. Atmos Sci 2018;1(1):20,172.  https://doi.org/10.1038/s41612-017-0004-6.Google Scholar
  146. 146.
    Xie PP, Arkin PA. Analyses of global monthly precipitation using gauge observations satellite estimates, and numerical model prediction. J Climate 1996;9:840–858.Google Scholar
  147. 147.
    Xie PP, Arkin PA. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 1997;78:2539–2558.Google Scholar
  148. 148.
    Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin EJ. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 2003;4(6): 1147–1167.Google Scholar
  149. 149.
    Huffman GJ, Adler RF, Bolvin DT, Gu G. Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett 2009;36:L17,808.  https://doi.org/10.1029/2009GL040000.Google Scholar
  150. 150.
    Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster JM, Bates SC, Danabasoglu G, Edwards J, Holland M, Kushner P, Lamarque JF, Lawrence D, Lindsay K, Middleton A, Munoz E, Neale R, Oleson K, Polvani L, Vertenstein M. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Amer Meteor Soc 2015;96:1333–1349.  https://doi.org/10.1175/JCLI-D-11-00015.1.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anji Seth
    • 1
    Email author
  • Alessandra Giannini
    • 2
    • 3
  • Maisa Rojas
    • 4
  • Sara A. Rauscher
    • 5
  • Simona Bordoni
    • 6
  • Deepti Singh
    • 7
  • Suzana J. Camargo
    • 8
  1. 1.Department of GeographyUniversity of ConnecticutStorrsUSA
  2. 2.International Research Institute for Climate and SocietyThe Earth Institute at Columbia UniversityPalisadesUSA
  3. 3.Laboratoire de Météorologie DynamiqueEcole Normale SupérieureParisFrance
  4. 4.University of ChileSantiagoChile
  5. 5.Department of GeographyUniversity of DelawareNewarkUSA
  6. 6.Environmental Science and EngineeringCalifornia Institute of TechnologyPasadenaUSA
  7. 7.School of the EnvironmentWashington State UniversityVancouverUSA
  8. 8.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA

Personalised recommendations