Advertisement

Current Climate Change Reports

, Volume 3, Issue 4, pp 303–315 | Cite as

Antarctica-Regional Climate and Surface Mass Budget

  • Vincent Favier
  • Gerhard Krinner
  • Charles Amory
  • Hubert Gallée
  • Julien Beaumet
  • Cécile Agosta
Glaciology and Climate Change (T Payne, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Glaciology and Climate Change

Abstract

We review recent literature on atmospheric, surface ocean and sea-ice observations and modeling results in the Antarctic sector and relate the observed climatic trends with the potential changes in the surface mass balance (SMB) of the ice sheet since 1900. Estimates of regional scale SMB distribution and trends remain subject to large uncertainties. Approaches combining and comparing multiple satellite and model-based assessments of ice sheet mass balance aim at reducing these knowledge gaps. During the last decades, significant changes in atmospheric circulation occurred around Antarctica, due to the exceptional positive trend in the Southern Annular Mode and to the climate variability observed in the tropical Pacific at the end of the twentieth century. Even though climate over the East Antarctic Ice-Sheet remained quite stable, a warming and precipitation increase was observed over the West Antarctic Ice-Sheet and over the West Antarctic Peninsula (AP) during the twentieth century. However, the high regional climate variability overwhelms climate changes associated to human drivers of global temperature changes, as reflected by a slight recent decadal cooling trend over the AP. Climate models still fail to accurately reproduce the multi-decadal SMB trends at a regional scale, and progress has to be achieved in reproducing atmospheric circulation changes related to complex ocean/ice/atmosphere interactions. Complex processes are also still insufficiently considered, such as (1) specific polar atmospheric processes (clouds, drifting snow, and stable boundary layer physics), (2) surface firn physics involved in the surface drag variations, or in firn air depletion and albedo feedbacks. Finally, progress in reducing the uncertainties relative to projections of the future SMB of Antarctica will largely depend on climate model capability to correctly consider teleconnections with low and mid-latitudes, and on the ability to correct them for biases, taking into account the coupling between ocean, ice, and atmosphere in high southern latitudes.

Keywords

Surface mass balance Antarctica Climate change Regional modeling 

Notes

Acknowledgments

The authors acknowledge the support from Agence Nationale de la Recherche scientific for the scientific traverses in Antarctica and the associated research on climate and surface mass balance (projects ANR-14-CE01-0001 (ASUMA) and ANR-16-CE01-0011 (EAIIST)), and the support from Institut Paul-Emile Victor (IPEV) for the surface mass balance observatory in Antarctica (GLACIOCLIM-SAMBA). We also thank the two anonymous reviewers for their relevant comments.

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, et al. Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2013.Google Scholar
  2. 2.
    Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, et al. Sea Level Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2013.Google Scholar
  3. 3.
    Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, et al. A Reconciled Estimate of Ice-Sheet Mass Balance. Science. 2012;338(6111):1183–9.Google Scholar
  4. 4.
    De Conto RM, Pollard D. Contribution of Antarctica to past and future sea-level rise. Nature. 2016;531(7596):591–7.CrossRefGoogle Scholar
  5. 5.
    Ritz C, Edwards TL, Durand G, Payne AJ, Peyaud V, Hindmarsh RCA. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature. 2015;528(7580):115–8.  https://doi.org/10.1038/nature16147.Google Scholar
  6. 6.
    Agosta C, Favier V, Krinner G, Gallée H, Fettweis X, Genthon C. High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Clim Dyn. 2013;41(11–12):3247–60.CrossRefGoogle Scholar
  7. 7.
    Krinner G, Magand O, Simmonds I, Genthon C, Dufresne J-L. Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim Dyn. 2006;28(2–3):215–30.CrossRefGoogle Scholar
  8. 8.
    Lenaerts JTM, Vizcaino M, Fyke J, van Kampenhout L, van den Broeke MR. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Clim Dyn. 2016;47(5–6):1367–81.CrossRefGoogle Scholar
  9. 9.
    Ligtenberg SRM, van de Berg WJ, van den Broeke MR, Rae JGL, van Meijgaard E. Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim Dyn. 2013;41(3–4):867–84.CrossRefGoogle Scholar
  10. 10.
    Wouters B, Bamber JL, van den Broeke MR, Lenaerts JTM, Sasgen I. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat Geosci. 2013;6(8):613–6.CrossRefGoogle Scholar
  11. 11.
    Jones JM, Gille ST, Goosse H, Abram NJ, Canziani PO, Charman DJ, et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat Clim Chang. 2016;6(10):917–26.Google Scholar
  12. 12.
    Thomas ER, Hosking JS, Tuckwell RR, Warren RA, Ludlow EC. Twentieth century increase in snowfall in coastal West Antarctica. Geophys Res Lett. 2015;42(21):9387–93.CrossRefGoogle Scholar
  13. 13.
    Turner J, Hosking JS, Marshall GJ, Phillips T, Bracegirdle TJ. Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low. Clim Dyn. 2016;46(7–8):2391–402.CrossRefGoogle Scholar
  14. 14.
    Turner J, Lu H, White I, King JC, Phillips T, Hosking JS, et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature. 2016;535(7612):411–5.Google Scholar
  15. 15.
    Vance TR, Roberts JL, Plummer CT, Kiem AS, van Ommen TD. Interdecadal Pacific variability and eastern Australian megadroughts over the last millennium. Geophys Res Lett. 2015;42(1):129–37.CrossRefGoogle Scholar
  16. 16.
    Meehl GA, Arblaster JM, Bitz CM, Chung CTY, Teng H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat Geosci. 2016;9(8):590–5.CrossRefGoogle Scholar
  17. 17.
    Favier V, Verfaillie D, Berthier E, Menegoz M, Jomelli V, Kay JE, et al. Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean. Sci Rep. 2016;6(1)  https://doi.org/10.1038/srep32396.
  18. 18.
    Schmidtko S, Heywood KJ, Thompson AF, Aoki S. Multidecadal warming of Antarctic waters. Science. 2014;346(6214):1227–31.CrossRefGoogle Scholar
  19. 19.
    Goosse H, Zunz V. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice–ocean feedback. Cryosphere. 2014;8(2):453–70.CrossRefGoogle Scholar
  20. 20.
    Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature. 2012;484(7395):502–5.CrossRefGoogle Scholar
  21. 21.
    Dutrieux P, De Rydt J, Jenkins A, Holland PR, Ha HK, Lee SH, et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science. 2014;343(6167):174–8.Google Scholar
  22. 22.
    Fogwill CJ, Phipps SJ, Turney CSM, Golledge NR. Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input. Earths Future. 2015;3(10):317–29.CrossRefGoogle Scholar
  23. 23.
    Pedro JB, Martin T, Steig EJ, Jochum M, Park W, Rasmussen SO. Southern Ocean deep convection as a driver of Antarctic warming events. Geophys Res Lett. 2016;43(5):2192–9.CrossRefGoogle Scholar
  24. 24.
    Abram NJ, Mulvaney R, Vimeux F, Phipps SJ, Turner J, England MH. Evolution of the Southern Annular Mode during the past millennium. Nat Clim Chang. 2014;4(7):564–9.CrossRefGoogle Scholar
  25. 25.
    Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci. 2011;4(11):741–9.CrossRefGoogle Scholar
  26. 26.
    Ding Q, Steig EJ, Battisti DS, Wallace JM. Influence of the tropics on the Southern Annular Mode. J Clim. 2012;25(18):6330–48.CrossRefGoogle Scholar
  27. 27.
    Bromwich DH, Nicolas JP, Monaghan AJ, Lazzara MA, Keller LM, Weidner GA, et al. Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci. 2012;6(2):139–45.Google Scholar
  28. 28.
    Grosvenor DP, King JC, Choularton TW, Lachlan-Cope T. Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen ice shelves. Atmospheric Chem Phys. 2014;14(18):9481–509.CrossRefGoogle Scholar
  29. 29.
    Turner J. The El Niño–southern oscillation and Antarctica. Int J Climatol. 2004;24(1):1–31.CrossRefGoogle Scholar
  30. 30.
    Bromwich DH, Nicolas JP, Monaghan AJ, Lazzara MA, Keller LM, Weidner GA, et al. Corrigendum: Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci. 2013;7(1):76.Google Scholar
  31. 31.
    Nicolas JP, Bromwich DH. New reconstruction of Antarctic near-surface temperatures: multidecadal trends and reliability of global reanalyses. J Clim. 2014;27(21):8070–93.CrossRefGoogle Scholar
  32. 32.
    Raphael MN, Hobbs W. The influence of the large-scale atmospheric circulation on Antarctic sea ice during ice advance and retreat seasons. Geophys Res Lett. 2014;41(14):5037–45.CrossRefGoogle Scholar
  33. 33.
    Fan T, Deser C, Schneider DP. Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys Res Lett. 2014;41(7):2419–26.CrossRefGoogle Scholar
  34. 34.
    Thomas ER, Abram NJ. Ice core reconstruction of sea ice change in the Amundsen-Ross Seas since 1702 A.D. Geophys Res Lett. 2016;43(10):5309–17.CrossRefGoogle Scholar
  35. 35.
    Porter SE, Parkinson CL, Mosley-Thompson E. Bellingshausen Sea ice extent recorded in an Antarctic Peninsula ice core. J Geophys Res Atmospheres. 2016;121(23):13,886–900.CrossRefGoogle Scholar
  36. 36.
    Abram NJ, Thomas ER, McConnell JR, Mulvaney R, Bracegirdle TJ, Sime LC, et al. Ice core evidence for a 20th century decline of sea ice in the Bellingshausen Sea, Antarctica. J Geophys Res. 2010;115(D23)  https://doi.org/10.1029/2010JD014644.
  37. 37.
    Bintanja R, van Oldenborgh GJ, Drijfhout SS, Wouters B, Katsman CA. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat Geosci. 2013;6(5):376–9.CrossRefGoogle Scholar
  38. 38.
    de Lavergne C, Palter JB, Galbraith ED, Bernardello R, Marinov I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat Clim Chang. 2014;4(4):278–82.CrossRefGoogle Scholar
  39. 39.
    Swart NC, Fyfe JC. The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys Res Lett. 2013;40(16):4328–32.CrossRefGoogle Scholar
  40. 40.
    Sigmond M, Fyfe JC. The Antarctic sea ice response to the ozone hole in climate models. J Clim. 2014;27(3):1336–42.CrossRefGoogle Scholar
  41. 41.
    Krinner G, Largeron C, Ménégoz M, Agosta C, Brutel-Vuilmet C. Oceanic forcing of Antarctic climate change: a study using a stretched-grid atmospheric general circulation model. J Clim. 2014;27(15):5786–800.CrossRefGoogle Scholar
  42. 42.
    Raphael MN, Marshall GJ, Turner J, Fogt RL, Schneider D, Dixon DA, et al. The Amundsen sea low: variability, change, and impact on Antarctic climate. Bull Am Meteorol Soc. 2016;97(1):111–21.Google Scholar
  43. 43.
    Li X, Holland DM, Gerber EP, Yoo C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature. 2014;505(7484):538–42.CrossRefGoogle Scholar
  44. 44.
    Gallaher DW, Campbell GG, Meier WN. Anomalous variability in Antarctic sea ice extents during the 1960s with the use of Nimbus data. IEEE J Sel Top Appl Earth Obs Remote Sens. 2014;7(3):881–7.Google Scholar
  45. 45.
    Meier WN, Gallaher D, Campbell GG. New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryosphere. 2013;7(2):699–705.CrossRefGoogle Scholar
  46. 46.
    Schneider DP, Steig EJ. Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc Natl Acad Sci. 2008;105(34):12154–8.CrossRefGoogle Scholar
  47. 47.
    Steig EJ, Ding Q, White JWC, Küttel M, Rupper SB, Neumann TA, et al. Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nat Geosci. 2013;6(5):372–5.Google Scholar
  48. 48.
    Mora C, Frazier AG, Longman RJ, Dacks RS, Walton MM, Tong EJ, et al. The projected timing of climate departure from recent variability. Nature. 2013;502(7470):183–7.Google Scholar
  49. 49.
    Frieler K, Clark PU, He F, Buizert C, Reese R, Ligtenberg SRM, et al. Consistent evidence of increasing Antarctic accumulation with warming. Nat Clim Chang. 2015;5(4):348–52.Google Scholar
  50. 50.
    Previdi M, Polvani LM. Anthropogenic impact on Antarctic surface mass balance, currently masked by natural variability, to emerge by mid-century. Environ Res Lett. 2016;11(9):094001.CrossRefGoogle Scholar
  51. 51.
    Palerme C, Genthon C, Claud C, Kay JE, Wood NB, L’Ecuyer T. Evaluation of current and projected Antarctic precipitation in CMIP5 models. Clim Dyn. 2017;48(1–2):225–39.CrossRefGoogle Scholar
  52. 52.
    Trusel LD, Frey KE, Das SB, Karnauskas KB, Kuipers Munneke P, van Meijgaard E, et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat Geosci. 2015;8(12):927–32.Google Scholar
  53. 53.
    Agosta C, Favier V, Genthon C, Gallée H, Krinner G, Lenaerts JTM, et al. A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Clim Dyn. 2012;38(1–2):75–86.Google Scholar
  54. 54.
    Eisen O, Frezzotti M, Genthon C, Isaksson E, Magand O, van den Broeke MR, et al. Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev Geophys. 2008;46(2):RG2001.Google Scholar
  55. 55.
    Lenaerts JTM, van den Broeke MR, van de Berg WJ, van Meijgaard E, Kuipers Munneke P. A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys Res Lett. 2012;39(4):L04501.CrossRefGoogle Scholar
  56. 56.
    Favier V, Agosta C, Parouty S, Durand G, Delaygue G, Gallée H, et al. An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere. 2013;7(2):583–97.Google Scholar
  57. 57.
    Masson-Delmotte V, Hou S, Ekaykin A, Jouzel J, Aristarain A, Bernardo RT, et al. A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling. J Clim. 2008;21(13):3359–87.Google Scholar
  58. 58.
    Thomas ER, van Wessem JM, Roberts J, Isaksson E, Schlosser E, Fudge TJ, Vallelonga P, Medley B, Lenaerts J, Bertler N, van den Broeke MR, Dixon DA, Frezzotti M, Stenni B, Curran M, Ekaykin AA. Review of regional Antarctic snow accumulation over the past 1000 years. Clim Past Discuss. 2017:1–42.  https://doi.org/10.5194/cp-2017-18.
  59. 59.
    Krinner G, Guicherd B, Ox K, Genthon C, Magand O. Influence of oceanic boundary conditions in simulations of Antarctic climate and surface mass balance change during the coming century. J Clim. 2008;21(5):938–62.CrossRefGoogle Scholar
  60. 60.
    Scambos TA, Frezzotti M, Haran T, Bohlander J, Lenaerts JTM, Van Den Broeke MR, et al. Extent of low-accumulation “wind glaze” areas on the East Antarctic plateau: implications for continental ice mass balance. J Glaciol. 2012;58(210):633–47.Google Scholar
  61. 61.
    PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. Nat Geosci. 2013;6(5):339–46.CrossRefGoogle Scholar
  62. 62.
    Magand O, Genthon C, Fily M, Krinner G, Picard G, Frezzotti M, et al. An up-to-date quality-controlled surface mass balance data set for the 90°–180°E Antarctica sector and 1950–2005 period. J Geophys Res. 2007;112(D12)  https://doi.org/10.1029/2006JD007691.
  63. 63.
    Seo K-W, Wilson CR, Scambos T, Kim B-M, Waliser DE, Tian B, et al. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013. J Geophys Res Solid Earth. 2015;120(5):3617–27.Google Scholar
  64. 64.
    Zwally HJ, Li J, Robbins JW, Saba JL, Yi D, Brenner AC. Mass gains of the Antarctic ice sheet exceed losses. J Glaciol. 2015;61(230):1019–36.CrossRefGoogle Scholar
  65. 65.
    Wang Y, Ding M, van Wessem JM, Schlosser E, Altnau S, van den Broeke MR, et al. A comparison of Antarctic Ice Sheet surface mass balance from atmospheric climate models and in situ observations. J Clim. 2016;29(14):5317–37.Google Scholar
  66. 66.
    Arthern RJ, Winebrenner DP, Vaughan DG. Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J Geophys Res Atmospheres. 2006;111(D6):D06107.CrossRefGoogle Scholar
  67. 67.
    Picard G, Domine F, Krinner G, Arnaud L, Lefebvre E. Inhibition of the positive snow-albedo feedback by precipitation in interior Antarctica. Nat Clim Chang. 2012;2(11):795–8.CrossRefGoogle Scholar
  68. 68.
    Picard G, Brucker L, Fily M, Gallée H, Krinner G. Modeling time series of microwave brightness temperature in Antarctica. J Glaciol. 2009;55(191):537–51.CrossRefGoogle Scholar
  69. 69.
    Trusel LD, Frey KE, Das SB. Antarctic surface melting dynamics: enhanced perspectives from radar scatterometer data. J Geophys Res. 2012;117(F2)  https://doi.org/10.1029/2011JF002126.
  70. 70.
    Fujita S, Holmlund P, Andersson I, Brown I, Enomoto H, Fujii Y, et al. Spatial and temporal variability of snow accumulation rate on the East Antarctic ice divide between Dome Fuji and EPICA DML. Cryosphere. 2011;5(4):1057–81.Google Scholar
  71. 71.
    Verfaillie D, Fily M, Le Meur E, Magand O, Jourdain B, Arnaud L, et al. Snow accumulation variability derived from radar and firn core data along a 600 km transect in Adelie Land, East Antarctic plateau. Cryosphere. 2012;6(6):1345–58.Google Scholar
  72. 72.
    Medley B, Joughin I, Smith BE, Das SB, Steig EJ, Conway H, et al. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. Cryosphere. 2014;8(4):1375–92.Google Scholar
  73. 73.
    Medley B, Joughin I, Das SB, Steig EJ, Conway H, Gogineni S, et al. Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophys Res Lett. 2013;40(14):3649–54.Google Scholar
  74. 74.
    Goursaud S, Masson-Delmotte V, Favier V, Preunkert S, Fily M, Gallée H, et al. A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica. Cryosphere. 2017;11(1):343–62.Google Scholar
  75. 75.
    Fraser AD, Nigro MA, Ligtenberg SRM, Legresy B, Inoue M, Cassano JJ, et al. Drivers of ASCAT C band backscatter variability in the dry snow zone of Antarctica. J Glaciol. 2016;62(231):170–84.Google Scholar
  76. 76.
    Briggs K, Shepherd A, Hogg A, Ivins E, Schlegel N, Joughin I, et al. Charting Ice Sheet Contributions to Global Sea Level Rise. Eos. 2016;97  https://doi.org/10.1029/2016EO055719.
  77. 77.
    Frezzotti M, Scarchilli C, Becagli S, Proposito M, Urbini S. A synthesis of the Antarctic surface mass balance during the last 800 yr. Cryosphere. 2013;7(1):303–19.CrossRefGoogle Scholar
  78. 78.
    van Wessem JM, Reijmer CH, Morlighem M, Mouginot J, Rignot E, Medley B, et al. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J Glaciol. 2014;60(222):761–70.Google Scholar
  79. 79.
    Das I, Bell RE, Scambos TA, Wolovick M, Creyts TT, Studinger M, et al. Influence of persistent wind scour on the surface mass balance of Antarctica. Nat Geosci. 2013;6(5):367–71.Google Scholar
  80. 80.
    Groot Zwaaftink CD, Cagnati A, Crepaz A, Fierz C, Macelloni G, Valt M, et al. Event-driven deposition of snow on the Antarctic Plateau: analyzing field measurements with SNOWPACK. Cryosphere. 2013;7(1):333–47.Google Scholar
  81. 81.
    Das I, Scambos TA, Koenig LS, van den Broeke MR, Lenaerts JTM. Extreme wind-ice interaction over Recovery Ice Stream, East Antarctica: impact of winds on surface mass balance. Geophys Res Lett. 2015;42(19):8064–71.CrossRefGoogle Scholar
  82. 82.
    Thiery W, Gorodetskaya IV, Bintanja R, Van Lipzig NPM, Van den Broeke MR, Reijmer CH, et al. Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica. Cryosphere. 2012;6(4):841–57.Google Scholar
  83. 83.
    Palerme C, Kay JE, Genthon C, L’Ecuyer T, Wood NB, Claud C. How much snow falls on the Antarctic ice sheet? Cryosphere. 2014;8(4):1577–87.CrossRefGoogle Scholar
  84. 84.
    Behrangi A, Christensen M, Richardson M, Lebsock M, Stephens G, Huffman GJ, et al. Status of high-latitude precipitation estimates from observations and reanalyses. J Geophys Res Atmos. 2016;121(9):4468–86.Google Scholar
  85. 85.
    Gorodetskaya IV, Kneifel S, Maahn M, Thiery W, Schween JH, Mangold A, et al. Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. Cryosphere. 2015;9(1):285–304.Google Scholar
  86. 86.
    Grazioli J, Genthon C, Boudevillain B, Duran-Alarcon C, Del Guasta M, Madeleine J-B, et al. Measurements of precipitation in Dumont d’Urville, Terre Adélie, East Antarctica. Cryosphere. 2017;11:1797–811.Google Scholar
  87. 87.
    Palm SP, Yang Y, Spinhirne JD, Marshak A. Satellite remote sensing of blowing snow properties over Antarctica. J Geophys Res. 2011;116(D16)  https://doi.org/10.1029/2011JD015828.
  88. 88.
    Palm SP, Kayetha V, Yang Y, Pauly R. Blowing snow sublimation and transport over Antarctica from 11 years of CALIPSO observations. Cryosphere Discuss. 2017:1–36.  https://doi.org/10.5194/tc-2017-45.
  89. 89.
    Chritin V, Bolognesi R, Gubler H. FlowCapt: a new acoustic sensor to measure snowdrift and wind velocity for avalanche forecasting. Cold Reg Sci Technol. 1999;30(1):125–33.CrossRefGoogle Scholar
  90. 90.
    Cierco F-X, Naaim-Bouvet F, Bellot H. Acoustic sensors for snowdrift measurements: how should they be used for research purposes? Cold Reg Sci Technol. 2007;49(1):74–87.CrossRefGoogle Scholar
  91. 91.
    Scarchilli C, Frezzotti M, Grigioni P, De Silvestri L, Agnoletto L, Dolci S. Extraordinary blowing snow transport events in East Antarctica. Clim Dyn. 2010;34(7–8):1195–206.CrossRefGoogle Scholar
  92. 92.
    Lenaerts JTM, van den Broeke MR, Déry SJ, van Meijgaard E, van de Berg WJ, Palm SP, Sanz Rodrigo J. Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation, 1. J Geophys Res Atmos. 2012;117(D5).  https://doi.org/10.1029/2011JD016145.
  93. 93.
    Sato T, Kimura T, Ishimaru T, Maruyama T. Field test of a new snow-particle counter (SPC) system. Ann Glaciol. 1993;18(1):149–54.CrossRefGoogle Scholar
  94. 94.
    Trouvilliez A, Naaim-Bouvet F, Bellot H, Genthon C, Gallée H. Evaluation of the FlowCapt acoustic sensor for the aeolian transport of snow. J Atmos Ocean Technol. 2015;32(9):1630–41.CrossRefGoogle Scholar
  95. 95.
    Trouvilliez A, Naaim-Bouvet F, Genthon C, Piard L, Favier V, Bellot H, et al. A novel experimental study of aeolian snow transport in Adelie Land (Antarctica). Cold Reg Sci Technol. 2014;108:125–38.Google Scholar
  96. 96.
    van de Berg WJ, van den Broeke MR, Reijmer CH, van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res 111(D11). doi: https://doi.org/10.1029/2005JD006495.
  97. 97.
    van Wessem JM, Ligtenberg SRM, Reijmer CH, van de Berg WJ, van den Broeke MR, Barrand NE, et al. The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution. Cryosphere. 2016;10(1):271–85.Google Scholar
  98. 98.
    van Wessem JM, Reijmer CH, Lenaerts JTM, van de Berg WJ, van den Broeke MR, van Meijgaard E. Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica. Cryosphere. 2014;8(1):125–35.CrossRefGoogle Scholar
  99. 99.
    Lenaerts JTM, van den Broeke MR. Modeling drifting snow in Antarctica with a regional climate model: 2. Results. J Geophys Res Atmos. 2012;117(D5).  https://doi.org/10.1029/2010JD015419.
  100. 100.
    Amory C, Trouvilliez A, Gallée H, Favier V, Naaim-Bouvet F, Genthon C, et al. Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica. Cryosphere. 2015;9(4):1373–83.Google Scholar
  101. 101.
    Barral H, Genthon C, Trouvilliez A, Brun C, Amory C. Blowing snow in coastal Adélie Land, Antarctica: three atmospheric-moisture issues. Cryosphere. 2014;8(5):1905–19.CrossRefGoogle Scholar
  102. 102.
    Lenaerts JTM, Smeets CJPP, Nishimura K, Eijkelboom M, Boot W, van den Broeke MR, et al. Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation. Cryosphere. 2014;8(2):801–14.Google Scholar
  103. 103.
    Gallée H, Trouvilliez A, Agosta C, Genthon C, Favier V, Naaim-Bouvet F. Transport of snow by the wind: a comparison between observations in Adélie Land, Antarctica, and simulations made with the Regional Climate Model MAR. Bound-Layer Meteorol. 2013;146(1):133–47.CrossRefGoogle Scholar
  104. 104.
    Vignon E, Genthon C, Barral H, Amory C, Picard G, Gallée H, et al. Momentum- and heat-flux parametrization at Dome C, Antarctica: a sensitivity study. Bound-Layer Meteorol. 2017;162(2):341–67.Google Scholar
  105. 105.
    Amory C, Naaim-Bouvet F, Gallée H, Vignon E. Brief communication: two well-marked cases of aerodynamic adjustment of sastrugi. Cryosphere. 2016;10(2):743–50.CrossRefGoogle Scholar
  106. 106.
    Amory C, Gallée H, Naaim-Bouvet F, Favier V, Vignon E, Picard G, Trouvilliez A, Piard L, Genthon C, Bellot H. Seasonal variations in drag coefficients over a sastrugi-covered snowfield of coastal East Antarctica. Bound-Layer Meteorol. 2017;164(1):107–33.Google Scholar
  107. 107.
    Libois Q, Picard G, Arnaud L, Morin S, Brun E. Modeling the impact of snow drift on the decameter-scale variability of snow properties on the Antarctic Plateau. J Geophys Res Atmos. 2014;119(20):11,662–81.CrossRefGoogle Scholar
  108. 108.
    King JC, Gadian A, Kirchgaessner A, Kuipers Munneke P, Lachlan-Cope TA, Orr A, et al. Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models. J Geophys Res Atmos. 2015;120(4):1335–47.Google Scholar
  109. 109.
    Ligtenberg SRM, Kuipers Munneke P, van den Broeke MR. Present and future variations in Antarctic firn air content. Cryosphere. 2014;8(5):1711–23.CrossRefGoogle Scholar
  110. 110.
    Hubbard B, Luckman A, Ashmore DW, Bevan S, Kulessa B, Kuipers Munneke P, et al. Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nat Commun. 2016;7:11897.Google Scholar
  111. 111.
    Kuipers Munneke P, Ligtenberg SRM, Van Den Broeke MR, Vaughan DG. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J Glaciol. 2014;60(220):205–14.CrossRefGoogle Scholar
  112. 112.
    Kuipers Munneke P, Ligtenberg SRM, Suder EA, Van Den Broeke MR. A model study of the response of dry and wet firn to climate change. Ann Glaciol. 2015;56(70):1–8.CrossRefGoogle Scholar
  113. 113.
    Cape MR, Vernet M, Skvarca P, Marinsek S, Scambos T, Domack E. Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. J Geophys Res Atmos. 2015;120(21):11,037–57.CrossRefGoogle Scholar
  114. 114.
    Luckman A, Elvidge A, Jansen D, Kulessa B, Kuipers Munneke P, King J, et al. Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds. Antarct Sci. 2014;26(06):625–35.Google Scholar
  115. 115.
    Lenaerts JTM, Lhermitte S, Drews R, Ligtenberg SRM, Berger S, Helm V, et al. Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nat Clim Chang. 2016;7(1):58–62.Google Scholar
  116. 116.
    Thomas ER, Bracegirdle TJ, Turner J, Wolff EW. A 308 year record of climate variability in West Antarctica. Geophys Res Lett. 2013;40(20):5492–6.CrossRefGoogle Scholar
  117. 117.
    Philippe M, Tison J-L, Fjøsne K, Hubbard B, Kjær HA, Lenaerts JTM, et al. Ice core evidence for a 20th century increase in surface mass balance in coastal Dronning Maud Land, East Antarctica. Cryosphere. 2016;10(5):2501–16.Google Scholar
  118. 118.
    Thomas ER, Marshall GJ, McConnell JR. A doubling in snow accumulation in the western Antarctic Peninsula since 1850. Geophys Res Lett. 2008;35(1)  https://doi.org/10.1029/2007GL032529.
  119. 119.
    Peel AD. Spatial temperature and accumulation rate variations at the Antarctic Peninsula. In: Morris EM, editor. The contribution of Antarctic Peninsula ice to sea level rise. Cambridge: British Antarctic Survey; 1992. p. 11–5.Google Scholar
  120. 120.
    Lenaerts JTM, van Meijgaard E, van den Broeke MR, Ligtenberg SRM, Horwath M, Isaksson E. Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys Res Lett. 2013;40(11):2684–8.CrossRefGoogle Scholar
  121. 121.
    Previdi M, Polvani LM. Impact of the Montreal Protocol on Antarctic surface mass balance and implications for global sea level rise. J Clim. 2017;30(18):7247–53.CrossRefGoogle Scholar
  122. 122.
    Turner J, Bracegirdle TJ, Phillips T, Marshall GJ, Hosking JS. An initial assessment of Antarctic sea ice extent in the CMIP5 models. J Clim. 2013;26(5):1473–84.CrossRefGoogle Scholar
  123. 123.
    Manabe S, Stouffer RJ. Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J Geophys Res. 1980;85(C10):5529–54.CrossRefGoogle Scholar
  124. 124.
    Hansen J, Fung I, Lacis A, Rind D, Lebedeff S, Ruedy R, et al. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J Geophys Res Atmos. 1988;93(D8):9341–64.Google Scholar
  125. 125.
    Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, et al. Evaluation of climate models. Climate Change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2013.Google Scholar
  126. 126.
    Pattyn F, Favier L, Sun S, Durand G. Progress in numerical modeling of antarctic ice-sheet dynamics. Curr Clim Change Rep. 2017;3(3):174–84.CrossRefGoogle Scholar
  127. 127.
    Powers JG, Manning KW, Bromwich DH, Cassano JJ, Cayette AM. A decade of Antarctic science support through Amps. Bull Am Meteorol Soc. 2012;93(11):1699–712.CrossRefGoogle Scholar
  128. 128.
    Fréville H, Brun E, Picard G, Tatarinova N, Arnaud L, Lanconelli C, et al. Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica. Cryosphere. 2014;8(4):1361–73.Google Scholar
  129. 129.
    Kingslake J, Ely JC, Das I, Bell RE. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature. 2017;544(7650):349–52.CrossRefGoogle Scholar
  130. 130.
    Bromwich DH, Nicolas JP, Hines KM, Kay JE, Key EL, Lazzara MA, et al. Tropospheric clouds in Antarctica. Rev Geophys. 2012;50(1)  https://doi.org/10.1029/2011RG000363.
  131. 131.
    Lenaerts JTM, Van Tricht K, Lhermitte S, L’Ecuyer TS. Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophys Res Lett. 2017;44(7):3355–64.CrossRefGoogle Scholar
  132. 132.
    Gallée H, Preunkert S, Argentini S, Frey MM, Genthon C, Jourdain B, et al. Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign. Atmos Chem Phys. 2015;15(11):6225–36.Google Scholar
  133. 133.
    Genthon C, Six D, Scarchilli C, Ciardini V, Frezzotti M. Meteorological and snow accumulation gradients across Dome C, East Antarctic plateau. Int J Climatol. 2016;36(1):455–66.CrossRefGoogle Scholar
  134. 134.
    Hall A. Projecting regional change. Science. 2014;346(6216):1461–2.CrossRefGoogle Scholar
  135. 135.
    Giorgi F, Gutowski WJ. Coordinated experiments for projections of regional climate change. Curr Clim Chang Rep. 2016;2(4):202–10.CrossRefGoogle Scholar
  136. 136.
    Gutowski WJ, Giorgi F, Timbal B, Frigon A, Jacob D, Kang H-S, et al. WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev. 2016;9(11):4087–95.Google Scholar
  137. 137.
    Agosta C, Fettweis X, Datta R. Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance. Cryosphere. 2015;9(6):2311–21.CrossRefGoogle Scholar
  138. 138.
    Ashfaq M, Skinner CB, Diffenbaugh NS. Influence of SST biases on future climate change projections. Clim Dyn. 2011;36(7–8):1303–19.CrossRefGoogle Scholar
  139. 139.
    Guldberg A, Kaas E, Déqué M, Yang S, Vester Thorsen S. Reduction of systematic errors by empirical model correction: impact on seasonal prediction skill. Tellus Dyn Meteorol Oceanogr. 2005;57(4):575–88.CrossRefGoogle Scholar
  140. 140.
    Kharin VV, Scinocca JF. The impact of model fidelity on seasonal predictive skill. Geophys Res Lett. 2012;39(18)  https://doi.org/10.1029/2012GL052815.
  141. 141.
    Nicolas JP, Vogelmann AM, Scott RC, Wilson AB, Cadeddu MP, Bromwich DH, et al. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat Commun. 2017;8:15799.Google Scholar
  142. 142.
    Sallée JB, Speer K, Morrow R. Response of the Antarctic Circumpolar Current to atmospheric variability. J Clim. 2008;21(12):3020–39.CrossRefGoogle Scholar
  143. 143.
    Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang. 2014;4(2):111–6.Google Scholar
  144. 144.
    Wang G, Cai W, Gan B, Wu L, Santoso A, Lin X, et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nat Clim Chang. 2017;7(8):568–72.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vincent Favier
    • 1
  • Gerhard Krinner
    • 1
  • Charles Amory
    • 2
  • Hubert Gallée
    • 1
  • Julien Beaumet
    • 1
  • Cécile Agosta
    • 2
  1. 1.Institut des Geosciences de l’Environnement UGA/CNRS/IRD/G-INPGrenoble Cedex 9France
  2. 2.Department of GeographyUniversity of LiegeLiegeBelgium

Personalised recommendations