Advertisement

Allergo Journal International

, Volume 28, Issue 6, pp 167–182 | Cite as

Consumer protection and risk assessment: sensitising substances in consumer products

  • Hermann-Josef Thierse
  • Andreas LuchEmail author
review

Abstract

Background

The human immune system is confronted daily with a large, chemically-varied range of potentially sensitising substances. Skin sensitising substances are found, above all, in a plethora of consumer products, e. g. cosmetics, jewellery, earrings, toys, textiles, leather, other everyday commodities and, in some cases, also tattoos. These products may contain sensitisers such as fragrances, preservatives, dyes, or other additives. To provide a greater degree of consumer protection, there is a need for specific legal regulation and risk assessment, which covers each possible human exposure to a sensitising substance or mixture. This review article describes the background and pathway towards the development and implementation of an international legal framework for the classification and labelling of chemicals that contain potentially skin sensitising substances. This includes the implementation of the globally harmonized system of classification and labelling of chemicals (GHS), the classification, labelling and packaging (CLP) regulation, registration, evaluation, authorisation and restriction of chemicals (REACH), and the regulation of cosmetics, among other national laws and regulations. Assessment criteria for classification is derived from a suite of in vitro and in vivo assays, in addition to in silico approaches—validated by the organisation for economic cooperation and development (OECD)—as well as data derived from human studies.

Results

New legislation for chemical and product safety is reflected in the classification and labelling of skin sensitising substances under Category 1, Subcategory 1A or 1B, within which the threshold concentrations of several materials are regulated, e. g. p‑phenylenediamine in hair dyes, nickel in piercings, chromium VI in leather and methylisothizolinone in cosmetics. In order to minimise the risk of human contact allergy from consumer products, the scientific committee on consumer safety (SCCS) and the German federal institute for risk assessment (BfR) investigate pathways of exposure and perform risk assessments using new in vitro approaches and new (immuno-) toxicological concepts (i. e. adverse outcome pathways [AOPs], key events as well as an integrated approach to testing and assessment [IATA]). In comparison to cosmetics, substances in textiles and other consumer products are less regulated. Major efforts in research and development are necessary to decode complex substance-specific molecular mechanisms in allergic responses and to define new substance-specific thresholds. Such efforts have been continuously proposed by the BfR with regard to fragrances for over 10 years.

Conclusions

Today, skin sensitising substances can be legally regulated and labelled and, depending on the exposure, their content in consumer products can be reduced or eliminated. Furthermore, the risk assessment of potentially sensitising substances makes consumer products safer. Further improvements in research approaches are required in the area of health and consumer protection with regard to allergy.

Keywords

Contact allergy Product safety CLP hazard category for skin sensitisation 1, 1A, 1B REACH OECD Cosmetics Textiles P-phenylenediamine Nickel Methylisothiazolinone Chromium VI 

Abbreviations

ACD

Allergic contact dermatitis

AOP

Adverse outcome pathway

ATP

Adaptation to the technical progress

BfR

German federal institute for risk assessment

BÜP

Federal monitoring plan

BVL

German federal office of consumer protection and food safety

CLP

Classification, labelling and packaging

CSA

Chemical safety assessment

DNEL

Derived no effect level

DPRA

Direct peptide reactivity assay

ECHA

European chemicals agency

EU

European Union

GHS

Globally harmonized system of classification and labelling of chemicals

GPMT

Guinea pig maximisation test

GPSD

General product safety directive

HPLC

High-performance liquid chromatography

IATA

Integrated approach to testing and assessment

IVDK

Information network of German dermatological hospitals

LFGB

German food, commodities and feed code (Lebensmittel‑, Bedarfsgegenstände und Futtermittelgesetzbuch)

LLNA

Local lymph node assay

MCI

Chloromethylisothiazolinone

MI

Methylisothiazolinone

MIE

Molecular initiating event

OECD

Organisation for economic cooperation and development

PPD

P-phenylenediamine

ProdSG

Product safety law

PTD

Toluene-2,5-diamine

(Q)SAR

(Quantitative) structure-activity relationship

REACH

Registration, evaluation, authorisation and restriction of chemicals

RMM

Risk management measures

SCCS

Scientific committee on consumer safety

SSO

Sorbitan sesquioleate

UN

United Nations

UNCED

United Nations conference on environment and development

WoE

Weight of evidence

Notes

Acknowledgements

The authors would like to thank Dr. Blair Johnston (BfR) for his critical reading of the translated manuscript.

Conflict of interest

H.-J. Thierse and A. Luch declare that they have no competing interests.

Supplementary material

40629_2019_93_MOESM1_ESM.pdf (85 kb)
Links and References for Regulation

References

  1. 1.
    Esser PR, Martin SF. Pathomechanisms of contact sensitization. Curr Allergy Asthma Rep. 2017;17:83.CrossRefGoogle Scholar
  2. 2.
    Griffiths C, Barker J, Bleiker T, Chalmers R, Creamer D. Rook’s textbook of dermatology. 9th ed. Chichester, West Sussex, Hoboken: John Wiley & Sons; 2016.CrossRefGoogle Scholar
  3. 3.
    Karlberg AT, Bergstrom MA, Borje A, Luthman K, Nilsson JL. Allergic contact dermatitis—formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol. 2008;21:53–69.CrossRefGoogle Scholar
  4. 4.
    Martin SF, Esser PR, Schmucker S, Dietz L, Naisbitt DJ, Park BK, et al. T‑cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cell Mol Life Sci. 2010;67:4171–84.CrossRefGoogle Scholar
  5. 5.
    Martin SF, Rustemeyer T, Thyssen JP. Recent advances in understanding and managing contact dermatitis. F1000Res. 2018;  https://doi.org/10.12688/f1000research.13499.1.Google Scholar
  6. 6.
    Murphy K, Travers P, Walport M, Janeway C. Janeway’s immunobiology. 9th ed. New York: Garland Science; 2016.CrossRefGoogle Scholar
  7. 7.
    Keck-Wilhelm. Isothiazolone in Kinderkosmetika. Berlin: BVL; 2016.Google Scholar
  8. 8.
    Vieth B. Nickelfreisetzung aus Spielzeug aus Metall (insbesondere auch Metall- und Modellbaukästen). Berlin: BVL; 2017.Google Scholar
  9. 9.
    Roggen EL. In vitro approaches for detection of chemical sensitization. Basic Clin Pharmacol Toxicol. 2014;115:32–40.CrossRefGoogle Scholar
  10. 10.
    Hoffmann S, Kleinstreuer N, Alepee N, Allen D, Api AM, Ashikaga T, et al. Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database(). Crit Rev Toxicol. 2018;48:344–58.CrossRefGoogle Scholar
  11. 11.
    Kleinstreuer NC, Hoffmann S, Alepee N, Allen D, Ashikaga T, Casey W, et al. Non-animal methods to predict skin sensitization (II): an assessment of defined approaches (*). Crit Rev Toxicol. 2018;48:359–74.CrossRefGoogle Scholar
  12. 12.
    Basketter DA, Gerberick GF, Kimber I, Loveless SE. The local lymph node assay: a viable alternative to currently accepted skin sensitization tests. Food Chem Toxicol. 1996;34:985–97.CrossRefGoogle Scholar
  13. 13.
    Martin SF, Merfort I, Thierse HJ. Interactions of chemicals and metal ions with proteins and role for immune responses. Mini Rev Med Chem. 2006;6:247–55.CrossRefGoogle Scholar
  14. 14.
    Thierse HJ, Gamerdinger K, Junkes C, Guerreiro N, Weltzien HU. T cell receptor (TCR) interaction with haptens: metal ions as non-classical haptens. Toxicology. 2005;209:101–7.CrossRefGoogle Scholar
  15. 15.
    Thierse HJ, Moulon C, Allespach Y, Zimmermann B, Doetze A, Kuppig S, et al. Metal-protein complex-mediated transport and delivery of Ni2+ to TCR/MHC contact sites in nickel-specific human T cell activation. J Immunol. 2004;172:1926–34.CrossRefGoogle Scholar
  16. 16.
    Williams WC, Copeland C, Boykin E, Quell SJ, Lehmann DM. Development and utilization of an ex vivo bromodeoxyuridine local lymph node assay protocol for assessing potential chemical sensitizers. J Appl Toxicol. 2015;35:29–40.CrossRefGoogle Scholar
  17. 17.
    Gerberick GF, Vassallo JD, Bailey RE, Chaney JG, Morrall SW, Lepoittevin JP. Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci. 2004;81:332–43.CrossRefGoogle Scholar
  18. 18.
    Gerberick GF, Vassallo JD, Foertsch LM, Price BB, Chaney JG, Lepoittevin JP. Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach. Toxicol Sci. 2007;97:417–27.CrossRefGoogle Scholar
  19. 19.
    Lepoittevin J. Allergic contact dermatitis: the molecular basis. Berlin: Springer; 1998.CrossRefGoogle Scholar
  20. 20.
    Enk AH, Katz SI. Early molecular events in the induction phase of contact sensitivity. Proc Natl Acad Sci U S A. 1992;89:1398–402.CrossRefGoogle Scholar
  21. 21.
    Natsch A. The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers—functional relevance and a hypothesis on innate reactions to skin sensitizers. Toxicol Sci. 2010;113:284–92.CrossRefGoogle Scholar
  22. 22.
    Natsch A, Bauch C, Foertsch F, Gerberick F, Normann K, Hilberer A, et al. The intra- and inter-laboratory reproducibility and predictivity of the KeratinoSens assay to predict skin sensitizers in vitro: results of a ring-study in five laboratories. Toxicol Vitro. 2011;25:733–44.CrossRefGoogle Scholar
  23. 23.
    Crunkhorn S. Deal watch: abbott boosts investment in NRF2 activators for reducing oxidative stress. Nat Rev Drug Discov. 2012;11:96.CrossRefGoogle Scholar
  24. 24.
    Biedermann T. Allergologie. Berlin: Springer; 2016.CrossRefGoogle Scholar
  25. 25.
    Koppes SA, Engebretsen KA, Agner T, Angelova-Fischer I, Berents T, Brandner J, et al. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis. Contact Dermatitis. 2017;77:1–16.CrossRefGoogle Scholar
  26. 26.
    Rustemeyer T, van Hoogstraten IMW, von Blomberg BME, Gibbs S, Scheper RJ. Mechanisms of irritant and allergic contact dermatitis. In: Preface to the fifth edition. 2011. pp. 43–90.Google Scholar
  27. 27.
    Nestle FO, Speidel H, Speidel MO. Metallurgy: high nickel release from 1‑ and 2‑euro coins. Nature. 2002;419:132.CrossRefGoogle Scholar
  28. 28.
    Romero-Brufau S, Best PJ, Holmes DR Jr., Mathew V, Davis MD, Sandhu GS, et al. Outcomes after coronary stent implantation in patients with metal allergy. Circ Cardiovasc Interv. 2012;5:220–6.CrossRefGoogle Scholar
  29. 29.
    Thierse HJ, Luch A. Die humane Nickelallergie – Vorkommen, Mechanismen, Produktsicherheit. UMID Umwelt Mensch Informationsd. 2014;2:25–33. https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/humane_nickelallergie_87-95.pdf. Accessed 7 Mar 2019.Google Scholar
  30. 30.
    Mahler V, Geier J, Schnuch A. Current trends in patch testing—new data from the German Contact Dermatitis Research Group (DKG) and the Information Network of Departments of Dermatology (IVDK). J Dtsch Dermatol Ges. 2014;12:583–92.Google Scholar
  31. 31.
    Schnuch A, Uter W. Decrease in nickel allergy in Germany and regulatory interventions. Contact Dermatitis. 2003;49:107–8.CrossRefGoogle Scholar
  32. 32.
    Jensen CS, Lisby S, Baadsgaard O, Volund A, Menne T. Decrease in nickel sensitization in a Danish schoolgirl population with ears pierced after implementation of a nickel-exposure regulation. Br J Dermatol. 2002;146:636–42.CrossRefGoogle Scholar
  33. 33.
    Schnuch A, Wolter J, Geier J, Uter W. Nickel allergy is still frequent in young German females—probably because of insufficient protection from nickel-releasing objects. Contact Dermatitis. 2011;64:142–50.CrossRefGoogle Scholar
  34. 34.
    Schnuch A, Schwitulla J. Decrease in nickel allergy in women after the second EU nickel directive. Contact Dermatitis. 2013;69:253–6.CrossRefGoogle Scholar
  35. 35.
    Ahlstrom MG, Thyssen JP, Menne T, Johansen JD. Prevalence of nickel allergy in Europe following the EU nickel directive—a review. Contact Dermatitis. 2017;77:193–200.CrossRefGoogle Scholar
  36. 36.
    Diepgen TL, Ofenloch RF, Bruze M, Bertuccio P, Cazzaniga S, Coenraads PJ, et al. Prevalence of contact allergy in the general population in different European regions. Br J Dermatol. 2016;174:319–29.CrossRefGoogle Scholar
  37. 37.
    Johansen JD, Aalto-Korte K, Agner T, Andersen KE, Bircher A, Bruze M, et al. European Society of Contact Dermatitis guideline for diagnostic patch testing—recommendations on best practice. Contact Dermatitis. 2015;73:195–221.CrossRefGoogle Scholar
  38. 38.
    Faurschou A, Menne T, Johansen JD, Thyssen JP. Metal allergen of the 21st century—a review on exposure, epidemiology and clinical manifestations of palladium allergy. Contact Dermatitis. 2011;64:185–95.CrossRefGoogle Scholar
  39. 39.
    Aktas Sukuroglu A, Battal D, Burgaz S. Monitoring of Lawsone, p‑phenylenediamine and heavy metals in commercial temporary black henna tattoos sold in Turkey. Contact Dermatitis. 2017;76:89–95.CrossRefGoogle Scholar
  40. 40.
    de Cuyper C, Lodewick E, Schreiver I, Hesse B, Seim C, Castillo-Michel H, et al. Are metals involved in tattoo-related hypersensitivity reactions? A case report. Contact Dermatitis. 2017;77:397–405.CrossRefGoogle Scholar
  41. 41.
    Kang IJ, Lee MH. Quantification of para-phenylenediamine and heavy metals in henna dye. Contact Dermatitis. 2006;55:26–9.CrossRefGoogle Scholar
  42. 42.
    Serup J. Medical treatment of tattoo complications. Curr Probl Dermatol. 2017;52:74–81.CrossRefGoogle Scholar
  43. 43.
    Jager C, Jappe U. Contact dermatitis to permanent make up: manifestation of a pre-existing nickel allergy. J Dtsch Dermatol Ges. 2005;3:527–9.CrossRefGoogle Scholar
  44. 44.
    Bf R. Piercing kann zur Sensibilisierung gegenüber Nickel führen. Berlin: BfR; 2008. Stellungnahme Nr. 046/2008 des BfR vom 10. Oktober 2008.Google Scholar
  45. 45.
    Bf R. Kontaktallergene in Spielzeug: Gesundheitliche Bewertung von Nickel und Duftstoffen. Berlin: BfR; 2012. Aktualisierte Stellungnahme Nr. 010/2012 des BfR vom 11. April 2012.Google Scholar
  46. 46.
    Bf R. Nickel in Tätowiermitteln kann Allergien auslösen. Berlin: BfR; 2013. Stellungnahme Nr. 012/2013 des BfR vom 25. Oktober 2012.Google Scholar
  47. 47.
    Diepgen TL, Naldi L, Bruze M, Cazzaniga S, Schuttelaar ML, Elsner P, et al. Prevalence of contact allergy to p‑phenylenediamine in the European general population. J Invest Dermatol. 2016;136:409–15.CrossRefGoogle Scholar
  48. 48.
    Schubert S, Lessmann H, Schnuch A, Uter W, Geier J, IVDK. Factors associated with p‑phenylenediamine sensitization: data from the Information Network of Departments of Dermatology, 2008–2013. Contact Dermatitis. 2018;78:199–207.CrossRefGoogle Scholar
  49. 49.
    Oakes T, Popple AL, Williams J, Best K, Heather JM, Ismail M, et al. The T cell response to the contact sensitizer paraphenylenediamine is characterized by a polyclonal diverse repertoire of antigen-specific receptors. Front Immunol. 2017;8:162.Google Scholar
  50. 50.
    Bf R. Henna-Haarfärbemittel mit p‑Phenylendiamin (PPD) stellen ein Gesundheitsrisiko dar. Berlin: BfR; 2011. Stellungnahme Nr. 024/2011 des BfR vom 19. Januar 2011.Google Scholar
  51. 51.
    Calogiuri G, Di Leo E, Butani L, Pizzimenti S, Incorvaia C, Macchia L, et al. Hypersensitivity reactions due to black henna tattoos and their components: are the clinical pictures related to the immune pathomechanism? Clin Mol Allergy. 2017;15:8.CrossRefGoogle Scholar
  52. 52.
    Isik S, Caglayan-Sozmen S, Anal O, Karaman O, Uzuner N. Severe neck and face edema in an adolescent-delayed hypersensitivity reaction to hair dye. Pediatr Emerg Care. 2017;33:422–3.CrossRefGoogle Scholar
  53. 53.
    Kind F, Scherer K, Bircher AJ. Contact dermatitis to para-phenylenediamine in hair dye following sensitization to black henna tattoos—an ongoing problem. J Dtsch Dermatol Ges. 2012;10:572–8.Google Scholar
  54. 54.
    Vogel TA, Coenraads PJ, Bijkersma LM, Vermeulen KM, Schuttelaar ML, Group EFS. p‑Phenylenediamine exposure in real life—a case-control study on sensitization rate, mode and elicitation reactions in the northern Netherlands. Contact Dermatitis. 2015;72:355–61.CrossRefGoogle Scholar
  55. 55.
    Haarfarben BR. Selbsttest kann Allergien verursachen. Berlin: BfR; 2014. Stellungnahme Nr. 015/2014 des BfR vom 10. Februar 2014.Google Scholar
  56. 56.
    Schnuch A, Geier J, Lessmann H, Arnold R, Uter W. Surveillance of contact allergies: methods and results of the Information Network of Departments of Dermatology (IVDK). Arerugi. 2012;67:847–57.Google Scholar
  57. 57.
    Bennike NH, Zachariae C, Johansen JD. Trends in contact allergy to fragrance mix I in consecutive Danish patients with eczema from 1986 to 2015: a cross-sectional study. Br J Dermatol. 2017;176:1035–41.CrossRefGoogle Scholar
  58. 58.
    Geier J, Schnuch A, Lessmann H, Uter W. Reactivity to sorbitan sesquioleate affects reactivity to fragrance mix I. Contact Dermatitis. 2015;73:296–304.CrossRefGoogle Scholar
  59. 59.
    Niklasson IB, Ponting DJ, Luthman K, Karlberg AT. Bioactivation of cinnamic alcohol forms several strong skin sensitizers. Chem Res Toxicol. 2014;27:568–75.CrossRefGoogle Scholar
  60. 60.
    Bennike NH, Zachariae C, Johansen JD. Non-mix fragrances are top sensitizers in consecutive dermatitis patients—a cross-sectional study of the 26 EU-labelled fragrance allergens. Contact Dermatitis. 2017;77:270–9.CrossRefGoogle Scholar
  61. 61.
    Nardelli A, Carbonez A, Ottoy W, Drieghe J, Goossens A. Frequency of and trends in fragrance allergy over a 15-year period. Contact Dermatitis. 2008;58:134–41.CrossRefGoogle Scholar
  62. 62.
    Nardelli A, Drieghe J, Claes L, Boey L, Goossens A. Fragrance allergens in ‘specific’ cosmetic products. Contact Dermatitis. 2011;64:212–9.CrossRefGoogle Scholar
  63. 63.
    Bf R. Blei, Nickel und allergene Duftstoffe in Kerzen sollten begrenzt werden. Berlin: BfR; 2014. Stellungnahme Nr. 004/2014 des BfR vom 11. November 2013.Google Scholar
  64. 64.
    Wang Z, Zhang Q, Li H, Lv Q, Wang W, Bai H. Rapid and green determination of 58 fragrance allergens in plush toys. J Sep Sci. 2018;41:657–68.CrossRefGoogle Scholar
  65. 65.
    Schwensen JF, Uter W, Bruze M, Svedman C, Goossens A, Wilkinson M, et al. The epidemic of methylisothiazolinone: a European prospective study. Contact Dermatitis. 2017;76:272–9.CrossRefGoogle Scholar
  66. 66.
    Urwin R, Craig S, Latheef F, Wilkinson M. Methylisothiazolinone: the epidemic is declining—but not gone. Contact Dermatitis. 2017;76:301–2.CrossRefGoogle Scholar
  67. 67.
    Uter W, Amario-Hita JC, Balato A, Ballmer-Weber B, Bauer A, Belloni Fortina A, et al. European Surveillance System on Contact Allergies (ESSCA): results with the European baseline series, 2013/14. J Eur Acad Dermatol Venereol. 2017;31:1516–25.CrossRefGoogle Scholar
  68. 68.
    Bf R. Allergien durch Methylisothiazolinon (MI) in Kosmetika möglich. Berlin: BfR; 2013. Stellungnahme Nr. 020/2013 des BfR vom 22. Januar 2013.Google Scholar
  69. 69.
    Ramirez T, Mehling A, Kolle SN, Wruck CJ, Teubner W, Eltze T, et al. LuSens: a keratinocyte based ARE reporter gene assay for use in integrated testing strategies for skin sensitization hazard identification. Toxicol In Vitro. 2014;28:1482–97.CrossRefGoogle Scholar
  70. 70.
    Alepee N, Piroird C, Aujoulat M, Dreyfuss S, Hoffmann S, Hohenstein A, et al. Prospective multicentre study of the U‑SENS test method for skin sensitization testing. Toxicol In Vitro. 2015;30:373–82.CrossRefGoogle Scholar
  71. 71.
    Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, et al. Development of an in vitro skin sensitization test using human cell lines: The human Cell Line Activation Test (h-CLAT) I. Optimization of the h‑CLAT protocol. Toxicol In Vitro. 2006;20:767–73.CrossRefGoogle Scholar
  72. 72.
    Dietz L, Esser PR, Schmucker SS, Goette I, Richter A, Schnolzer M, et al. Tracking human contact allergens: from mass spectrometric identification of peptide-bound reactive small chemicals to chemical-specific naive human T‑cell priming. Toxicol Sci. 2010;117:336–47.CrossRefGoogle Scholar
  73. 73.
    Richter A, Schmucker SS, Esser PR, Traska V, Weber V, Dietz L, et al. Human T cell priming assay (hTCPA) for the identification of contact allergens based on naive T cells and DC—IFN-gamma and TNF-alpha readout. Toxicol In Vitro. 2013;27:1180–5.CrossRefGoogle Scholar
  74. 74.
    Buehler EV. Delayed contact hypersensitivity in the Guinea pig. Arch Dermatol. 1965;91:171–7.CrossRefGoogle Scholar
  75. 75.
    Magnusson B, Kligman AM. The identification of contact allergens by animal assay. The guinea pig maximization test. J Invest Dermatol. 1969;52:268–76.CrossRefGoogle Scholar
  76. 76.
    Kimber I, Dearman RJ, Scholes EW, Basketter DA. The local lymph node assay: developments and applications. Toxicology. 1994;93:13–31.CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical and Product SafetyFederal Institute for Risk AssessmentBerlinGermany

Personalised recommendations