Theoretical and Experimental Plant Physiology

, Volume 30, Issue 3, pp 215–222 | Cite as

ABCF3 regulates the expression of aquaporin genes and endoplasmic reticulum stress-related genes in Arabidopsis

  • Shuang Li
  • Dong Li
  • Ping Zhang
  • Ruling Wang
  • Liangliang Sun
  • Jinpeng Wan
  • Jin XuEmail author


The ATP-binding cassette (ABC) F/GCN (general control non-derepressible) subfamily is a group of soluble ABC proteins that has two nucleotide binding domains (NBDs) but no transmembrane domains (TMDs). Previous study has indicated that ABCF3, also called GCN20/SCORD5, is involved in stress-associated protein translation control and defense responses to bacterial infection. Here, we show that ABCF3 regulates H2O2 uptake and endoplasmic reticulum (ER) stress responses in Arabidopsis. ABCF3 expressed mainly in leaves, stems, root tips, seeds, and anther. Analysis of abcf3 mutants and transgenic overexpressors (OX) of ABCF3 indicates that ABCF3 regulates H2O2 uptake. qRT-PCR analysis indicated that ABCF3 affects the expression of several aquaporin genes that were involved in H2O2 uptake in plants. In addition, abcf3 mutants exhibited enhanced sensitivity to ER stress and amino acid deprivation when challenged with ER stress inducers tunicamycin and amino acid synthesis inhibitor chlorsulfuron compared to wild type. Overexpression of AtABCF3 increases, whereas, abcf3 mutants depress the expression of ER stress-related genes. Taken together, these results indicated that ABCF3 regulates stress response by modulating aquaporin gene expression and ER stress responses.


ABCF3 Endoplasmic reticulum stress Hydrogen peroxide Aquaporin Arabidopsis thaliana 



The authors gratefully acknowledge the Central Laboratory of the Xishuangbanna Tropical Botanical Garden for providing us with research facilities. This work was supported by the National Key Research and Development Program of China (2016YFC0501901), China National Natural Sciences Foundation (31772383, 31272239), Qinghai innovation platform construction project (2017-ZJ-Y20), and Yunnan Province Foundation for academic leader (2014HB043).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

40626_2018_116_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 20 kb)


  1. Aguayo D, Pacheco N, Morales EH, Collao B, Luraschi R, Cabezas C, Saavedra CP et al (2015) Hydrogen peroxide and hypochlorous acid influx through the major S. typhimurium porin OmpD is affected by substitution of key residues of the channel. Arch Biochem Biophys 568:38–45CrossRefPubMedGoogle Scholar
  2. Badri DV, Chaparro JM, Manter DK, Martinoia E, Vivanco JM (2012) Influence of ATP-Binding cassette transporters in root exudation of phytoalexins, signals, and in disease resistance. Front Plant Sci 3:149CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. BBA-Gen Subj 1840:1596–1604CrossRefGoogle Scholar
  4. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. BBA-Biomembr 1758:994–1003CrossRefGoogle Scholar
  5. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192CrossRefPubMedGoogle Scholar
  6. Cho Y, Kanehara K (2017) Endoplasmic reticulum stress response in Arabidopsis roots. Front Plant Sci 8:144PubMedPubMedCentralGoogle Scholar
  7. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  8. Fewell SW, Travers KJ, Weissman JS, Brodsky JL (2001) The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 35:149–191CrossRefPubMedGoogle Scholar
  9. Finn RN, Cerda J (2015) Evolution and functional diversity of aquaporins. Biol Bull 229:6–23CrossRefPubMedGoogle Scholar
  10. Izquierdo Y, Kulasekaran S, Benito P, López B, Marcos R, Cascón T, Castresana C et al (2018) Arabidopsis non-responding to oxylipins locus NOXY7 encodes a yeast GCN1 homolog that mediates non-canonical translation regulation and stress adaptation. Plant, Cell Environ 41(6):1438–1452CrossRefGoogle Scholar
  11. Landgraf R, Smolka U, Altmann S, Eschen-Lippold L, Senning M, Sonnewald S, Scheel D et al (2014) The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. Plant Cell 26:3403–3415CrossRefPubMedPubMedCentralGoogle Scholar
  12. Lu YP, Li ZS, Rea PA (1997) AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc Natl Acad Sci 94:8243–8248CrossRefPubMedGoogle Scholar
  13. Lu YP, Li ZS, Drozdowicz YM, Hörtensteiner S, Martinoia E, Rea PA (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell 10:267–282PubMedPubMedCentralGoogle Scholar
  14. Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–355CrossRefPubMedGoogle Scholar
  15. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519CrossRefPubMedGoogle Scholar
  16. Sadhukhan A, Kobayashi Y, Nakano Y, Iuchi S, Kobayashi M, Sahoo L, Koyama H (2017) Genome-wide association study reveals that the aquaporin NIP1; 1 contributes to variation in hydrogen peroxide sensitivity in Arabidopsis thaliana. Mol Plant 10:1082–1094CrossRefPubMedGoogle Scholar
  17. Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sánchez-Fernández R, Davies TE, Coleman JO, Rea PA (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276:30231–30244CrossRefPubMedGoogle Scholar
  19. Srivastava R, Deng Y, Shah S, Rao AG, Howell SH (2013) BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell 25:1416–1429CrossRefPubMedPubMedCentralGoogle Scholar
  20. Suzuki N (2015) ROS as key players of abiotic stress responses in plants. In: Gupta DK et al (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer, Cham, pp 57–82CrossRefGoogle Scholar
  21. Tian S, Wang X, Li P, Wang H, Ji H, Xie J, Dong H et al (2016) Plant aquaporin AtPIP1;4 links apoplastic H2O2 induction to disease immunity pathways. Plant Physiol. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Tommasini R, Vogt E, Fromenteau M, Hörtensteiner S, Matile P, Amrhein N, Martinoia E (1998) An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J 13:773–780CrossRefPubMedGoogle Scholar
  23. Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Murphy A et al (2008) Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159CrossRefPubMedGoogle Scholar
  24. Zeng W, Brutus A, Kremer JM, Withers JC, Gao X, Jones AD, He SY (2011) A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000. PLoS Pathog 7:e1002291CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Brazilian Society of Plant Physiology 2018

Authors and Affiliations

  • Shuang Li
    • 1
    • 2
  • Dong Li
    • 1
  • Ping Zhang
    • 1
    • 2
  • Ruling Wang
    • 1
  • Liangliang Sun
    • 1
  • Jinpeng Wan
    • 1
    • 2
  • Jin Xu
    • 1
    Email author
  1. 1.CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations