Uric acid in CKD: has the jury come to the verdict?


Epidemiological studies show that hyperuricemia independently predicts the development of chronic kidney disease (CKD) in individuals with normal kidney function both in the general population and in subjects with diabetes. As a matter of fact, an unfavorable role of uric acid may somewhat be harder to identify in the context of multiple risk factors and pathogenetic mechanisms typical of overt CKD such as proteinuria and high blood pressure. Although the discrepancy in clinical results could mean that urate lowering treatment does not provide a constant benefit in all patients with hyperuricemia and CKD, we believe that the inconsistency in the results from available meta-analysis is mainly due to inadequate sample size, short follow-up times and heterogeneity in study design characterizing the randomized controlled trials included in the analyses. Therefore, available data support the view that hyperuricemia has a damaging impact on kidney function, while preliminary evidence suggests that treatment of so-called asymptomatic hyperuricemia may be helpful to slow or delay the progression of chronic kidney.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1


  1. 1.

    Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R (2008) Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol 19:2407–2413.

  2. 2.

    Takae K, Nagata M, Hata J, Mukai N, Hirakawa Y, Yoshida D, Kishimoto H, Tsuruya K, Kitazono T, Kiyohara Y, Ninomiya T (2016) Serum uric acid as a risk factor for chronic kidney disease in a Japanese community—the Hisayama study. Circ J. 80:1857–1862. 2016 Jun 17)

  3. 3.

    De Cosmo S, Viazzi F, Pacilli A, Giorda C, Ceriello A, Gentile S, Russo G, Rossi MC, Nicolucci A, Guida P, Feig D, Johnson RJ, Pontremoli R, AMD-Annals Study Group (2015) Serum uric acid and risk of CKD in type 2 diabetes. Clin J Am Soc Nephrol 10:1921–1929.

  4. 4.

    Storhaug HM, Toft I, Norvik JV, Jenssen T, Eriksen BO, Melsom T, Løchen ML, Solbu MD (2015) Uric acid is associated with microalbuminuria and decreased glomerular filtration rate in the general population during 7 and 13 years of follow-up: the Tromsø study. BMC Nephrol 16:210.

  5. 5.

    Viazzi F, Russo GT, Ceriello A, Fioretto P, Giorda C, De Cosmo S, Pontremoli R (2019) Natural history and risk factors for diabetic kidney disease in patients with T2D: lessons from the AMD-annals. J Nephrol 32:517–525.

  6. 6.

    Toyama T, Furuichi K, Shimizu M, Hara A, Iwata Y, Sakai N, Perkovic V, Kobayashi M, Mano T, Kaneko S, Wada T (2015) Relationship between serum uric acid levels and chronic kidney disease in a Japanese cohort with normal or mildly reduced kidney function. PLoS ONE 10:e0137449.

  7. 7.

    Bravo RC, Gamo MB, Lee HH, Yoon YE, Han WK (2017) Investigating serum uric acid as a risk factor in the development of delayed renal recovery in living kidney donors. Transplant Proc 49:930–934.

  8. 8.

    Ceriello A, De Cosmo S, Rossi MC, Lucisano G, Genovese S, Pontremoli R, Fioretto P, Giorda C, Pacilli A, Viazzi F, Russo G, Nicolucci A, AMD-Annals Study Group (2017) Variability in HbA1c, blood pressure, lipid parameters and serum uric acid, and risk of development of chronic kidney disease in type 2 diabetes. Diabetes Obes Metab 19:1570–1578.

  9. 9.

    Hanai K, Tauchi E, Nishiwaki Y, Mori T, Yokoyama Y, Uchigata Y, Babazono T (2018) Effects of uric acid on kidney function decline differ depending on baseline kidney function in type 2 diabetic patients. Nephrol Dial Transplant.

  10. 10.

    Madero M, Sarnak MJ, Wang X, Greene T, Beck GJ, Kusek JW, Collins AJ, Levey AS, Menon V (2009) Uric acid and long-term outcomes in CKD. Am J Kidney Dis 53:796–803.

  11. 11.

    Nacak H, van Diepen M, Qureshi AR, Carrero JJ, Stijnen T, Dekker FW, Evans M (2015) Uric acid is not associated with decline in renal function or time to renal replacement therapy initiation in a referred cohort of patients with stage III, IV and V chronic kidney disease. Nephrol Dial Transplant 30:2039–2045.

  12. 12.

    Liu WC, Hung CC, Chen SC, Yeh SM, Lin MY, Chiu YW, Kuo MC, Chang JM, Hwang SJ, Chen HC (2012) Association of hyperuricemia with renal outcomes, cardiovascular disease, and mortality. Clin J Am Soc Nephrol 7:541–548.

  13. 13.

    Kalil RS, Carpenter MA, Ivanova A, Gravens-Mueller L, John AA, Weir MR, Pesavento T, Bostom AG, Pfeffer MA, Hunsicker LG (2017) Impact of hyperuricemia on long-term outcomes of kidney transplantation: analysis of the FAVORIT study. Am J Kidney Dis 70:762–769.

  14. 14.

    Tsai CW, Lin SY, Kuo CC, Huang CC (2017) Serum uric acid and progression of kidney disease: a longitudinal analysis and mini-review. PLoS ONE 12:e0170393.

  15. 15.

    Uchida S, Chang WX, Ota T, Tamura Y, Shiraishi T, Kumagai T, Shibata S, Fujigaki Y, Hosoyamada M, Kaneko K, Shen ZY, Fujimori S (2015) Targeting uric acid and the inhibition of progression to end-stage renal disease—a propensity score analysis. PLoS ONE 10:e0145506.

  16. 16.

    Rodenbach KE, Schneider MF, Furth SL, Moxey-Mims MM, Mitsnefes MM, Weaver DJ, Warady BA, Schwartz GJ (2015) Hyperuricemia and progression of CKD in children and adolescents: the chronic kidney disease in children (CKiD) cohort study. Am J Kidney Dis 66:984–992.

  17. 17.

    Kim DG, Choi HY, Kim HY, Lee EJ, Huh KH, Kim MS, Nam CM, Kim BS, Kim YS (2018) Association between post-transplant serum uric acid levels and kidney transplantation outcomes. PLoS ONE 13:e0209156.

  18. 18.

    Akasaka H, Yoshida H, Hanawa N (2014) The impact of elevation of serum uric acid level on the natural history of glomerular filtration rate (GFR) and its sex difference. Nephrol Dial Transplant 29:1932–1939

  19. 19.

    Iseki K, Ikemiya Y, Inoue T, Iseki C, Kinjo K, Takishita S (2004) Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am J Kidney Dis 44:642–650

  20. 20.

    Srivastava A, Kaze AD, McMullan CJ, Isakova T, Waikar SS (2018) Uric acid and the risks of kidney failure and death in individuals with CKD. Am J Kidney Dis 71:362–370.

  21. 21.

    Kanda E, Muneyuki T, Kanno Y, Suwa K, Nakajima K (2015) Uric acid level has a U-shaped association with loss of kidney function in healthy people: a prospective cohort study. PLoS ONE 10:e0118031.

  22. 22.

    Chang W, Uchida S, Qi P, Zhang W, Wang X, Liu Y, Han Y, Li J, Xu H, Hao J (2019) Decline in serum uric acid predicts higher risk for mortality in peritoneal dialysis patients—a propensity score analysis. J Nephrol. ahead of print)

  23. 23.

    Xu C, Lu A, Lu X, Zhang L, Fang H, Zhou L, Yang T (2017) Activation of renal (Pro)renin receptor contributes to high fructose-induced salt sensitivity. Hypertension 69:339–348.

  24. 24.

    Sánchez-Lozada LG, Tapia E, Santamaría J, Avila-Casado C, Soto V, Nepomuceno T, Rodríguez-Iturbe B, Johnson RJ, Herrera-Acosta J (2005) Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 67:237–247

  25. 25.

    Johnson RJ, Segal MS, Srinivas T, Ejaz A, Mu W, Roncal C, Sánchez-Lozada LG, Gersch M, Rodriguez-Iturbe B, Kang DH, Acosta JH (2015) Essential hypertension, progressive renal disease, and uric acid: a pathogenetic link? J Am Soc Nephrol 16:1909–1919

  26. 26.

    Liu H, Xiong J, He T, Xiao T, Li Y, Yu Y, Huang Y, Xu X, Huang Y, Zhang J, Zhang B, Zhao J (2017) High uric acid-induced epithelial-mesenchymal transition of renal tubular epithelial cells via the TLR4/NF-kB signaling pathway. Am J Nephrol 46:333–342.

  27. 27.

    Bjornstad P, Lanaspa MA, Ishimoto T, Kosugi T, Kume S, Jalal D, Maahs DM, Snell-Bergeon JK, Johnson RJ, Nakagawa T (2015) Fructose and uric acid in diabetic nephropathy. Diabetologia 58:1993–2002.

  28. 28.

    Kim SM, Lee SH, Kim YG, Kim SY, Seo JW, Choi YW, Kim DJ, Jeong KH, Lee TW, Ihm CG, Won KY, Moon JY (2015) Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am J Physiol Ren Physiol 308:F993–F1003.

  29. 29.

    Verzola D, Ratto E, Villaggio B, Parodi EL, Pontremoli R, Garibotto G, Viazzi F (2014) Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4. PLoS ONE 9:e115210.

  30. 30.

    Li Z, Sheng Y, Liu C, Li K, Huang X, Huang J, Xu K (2016) Nox4 has a crucial role in uric acid-induced oxidative stress and apoptosis in renal tubular cells. Mol Med Rep 13:4343–4348.

  31. 31.

    Milanesi S, Verzola D, Cappadona F, Bonino B, Murugavel A, Pontremoli R, Garibotto G, Viazzi F (2019) Uric acid and angiotensin II additively promote inflammation and oxidative stress in human proximal tubule cells by activation of toll-like receptor 4. J Cell Physiol 234:10868–10876.

  32. 32.

    Roncal CA, Reungjui S, Sánchez-Lozada LG, Mu W, Sautin YY, Nakagawa T, Johnson RJ (2009) Combination of captopril and allopurinol retards fructose-induced metabolic syndrome. Am J Nephrol 30:399–404.

  33. 33.

    Bose B, Badve SV, Hiremath SS, Boudville N, Brown FG, Cass A, de Zoysa JR, Fassett RG, Faull R, Harris DC, Hawley CM, Kanellis J, Palmer SC, Perkovic V, Pascoe EM, Rangan GK, Walker RJ, Walters G, Johnson DW (2014) Effects of uric acid-lowering therapy on renal outcomes: a systematic review and meta-analysis. Nephrol Dial Transplant 29:406–413.

  34. 34.

    Kanji T, Gandhi M, Clase CM, Yang R (2015) Urate lowering therapy to improve renal outcomes in patients with chronic kidney disease: systematic review and meta-analysis. BMC Nephrol 16:58.

  35. 35.

    Liu X, Zhai T, Ma R, Luo C, Wang H, Liu L (2018) Effects of uric acid-lowering therapy on the progression of chronic kidney disease: a systematic review and meta-analysis. Ren Fail 40:289–297.

  36. 36.

    Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincón A, Arroyo D, Luño J (2010) Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 5:1388–1393.

  37. 37.

    Goicoechea M, Garcia de Vinuesa S, Verdalles U, Verde E, Macias N, Santos A, Pérez de Jose A, Cedeño S, Linares T, Luño J (2015) Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial. Am J Kidney Dis 65:543–549.

  38. 38.

    Kimura K, Hosoya T, Uchida S, Inaba M, Makino H, Maruyama S, Ito S, Yamamoto T, Tomino Y, Ohno I, Shibagaki Y, Iimuro S, Imai N, Kuwabara M, Hayakawa H, Ohtsu H, Ohashi Y, FEATHER Study Investigators (2018) Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis 72:798–810.

  39. 39.

    Kojima S, Matsui K, Hiramitsu S, Hisatome I, Waki M, Uchiyama K, Yokota N, Tokutake E, Wakasa Y, Jinnouchi H, Kakuda H, Hayashi T, Kawai N, Mori H, Sugawara M, Ohya Y, Kimura K, Saito Y, Ogawa H (2019) Febuxostat for cerebral and CaRdiorenovascular Events PrEvEntion StuDy. Eur Heart J 40:1778–1786.

  40. 40.

    Schumacher HR Jr, Becker MA, Wortmann RL, Macdonald PA, Hunt B, Streit J, Lademacher C, Joseph-Ridge N (2008) Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheumatol 59:1540–1548

  41. 41.

    Becker MA, Schumacher HR Jr, Wortmann RL, MacDonald PA, Eustace D, Palo WA, Streit J, Joseph-Ridge N (2005) Febuxostat compared with allopurinol in patients with hyperuricaemia. N Engl J Med 353:2450–2461

  42. 42.

    Liu X, Wang H, Ma R, Shao L, Zhang W, Jiang W, Luo C, Zhai T, Xu Y (2019) The urate-lowering efficacy and safety of febuxostat versus allopurinol in Chinese patients with asymptomatic hyperuricemia and with chronic kidney disease stages 3–5. Clin Exp Nephrol 23:362–370.

  43. 43.

    Pisano A, Cernaro V, Gembillo G, D’Arrigo G, Buemi M, Bolignano D (2017) Xanthine oxidase inhibitors for improving renal function in chronic kidney disease patients: an updated systematic review and meta-analysis. Int J Mol Sci 18:E2283.

  44. 44.

    Wu AH, Gladden JD, Ahmed M, Ahmed A, Filippatos G (2016) Relation of serum uric acid to cardiovascular disease. Int J Cardiol 213:4–7.

  45. 45.

    Xia X, Luo Q, Li B, Lin Z, Yu X, Huang F (2016) Serum uric acid and mortality in chronic kidney disease: a systematic review and meta-analysis. Metabolism 65:1326–1341.

  46. 46.

    Luo Q, Xia X, Li B, Lin Z, Yu X, Huang F (2019) Serum uric acid and cardiovascular mortality in chronic kidney disease: a meta-analysis. BMC Nephrol 20:18.

  47. 47.

    Afsar B, Sag AA, Oztosun C, Kuwabara M, Cozzolino M, Covic A, Kanbay M (2019) The role of uric acid in mineral bone disorders in chronic kidney disease. J Nephrol 32:709–717.

  48. 48.

    Kao MP, Ang DS, Gandy SJ, Nadir MA, Houston JG, Lang CC, Struthers AD (2011) Allopurinol benefits left ventricular mass and endothelial dysfunction in chronic kidney disease. J Am Soc Nephrol 22:1382–1389.

  49. 49.

    Jalal DI, Decker E, Perrenoud L, Nowak KL, Bispham N, Mehta T, Smits G, You Z, Seals D, Chonchol M, Johnson RJ (2017) Vascular function and uric acid-lowering in stage 3 CKD. J Am Soc Nephrol 28:943–952.

  50. 50.

    Smink PA, Bakker SJ, Laverman GD, Berl T, Cooper ME, de Zeeuw D, Lambers Heerspink HJ (2012) An initial reduction in serum uric acid during angiotensin receptor blocker treatment is associated with cardiovascular protection: a post-hoc analysis of the RENAAL and IDNT trials. J Hypertens 30:1022–1028.

  51. 51.

    Su X, Xu B, Yan B, Qiao X, Wang L (2017) Effects of uric acid-lowering therapy in patients with chronic kidney disease: a meta-analysis. PLoS ONE 12:e0187550.

  52. 52.

    White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, Hunt B, Castillo M, Gunawardhana L, Investigators CARES (2018) Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med 378:1200–1210

  53. 53.

    Choi H, Neogi T, Stamp L, Dalbeth N, Terkeltaub R (2018) New perspectives in rheumatology: implications of the cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities trial and the associated food and drug administration public safety alert. Arthritis Rheumatol 70:1702–1709.

  54. 54.

    Cuenca JA, Balda J, Palacio A, Young L, Pillinger MH, Tamariz L (2019) Febuxostat and cardiovascular events: a systematic review and meta-analysis. Int J Rheumatol 2019:1076189.

  55. 55.

    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I (2018) Authors/Task Force Members: 2018 ESC/ESH guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 36:1953–2041.

  56. 56.

    Yamanaka H, Japanese Society of Gout and Nucleic Acid Metabolism (2011) Japanese guideline for the management of hyperuricemia and gout: second edition. Nucleosides Nucleotides Nucleic Acids 30:1018–1029.

  57. 57.

    Sato Y, Feig DI, Stack AG, Kang DH, Lanaspa MA, Ejaz AA, Sánchez-Lozada LG, Kuwabara M, Borghi C, Johnson RJ (2019) The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD. Nat Rev Nephrol.

  58. 58.

    Afkarian M, Polsky S, Parsa A, Aronson R, Caramori ML, Cherney DZ, Crandall JP, de Boer IH, Elliott TG, Galecki AT, Goldfine AB, Haw JS, Hirsch IB, Karger AB, Lingvay I, Maahs DM, McGill JB, Molitch ME, Perkins BA, Pop-Busui R, Pragnell M, Rosas SE, Rossing P, Senior P, Sigal RJ, Spino C, Tuttle KR, Umpierrez GE, Wallia A, Weinstock RS, Wu C, Mauer M, Doria A, PERL Study Group (2019) Preventing early renal loss in diabetes (PERL) study: a randomized double-blinded trial of allopurinol-rationale, design, and baseline data. Diabetes Care 42:1454–1463.

Download references

Author information

Correspondence to Francesca Viazzi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonino, B., Leoncini, G., Russo, E. et al. Uric acid in CKD: has the jury come to the verdict?. J Nephrol (2020) doi:10.1007/s40620-020-00702-7

Download citation


  • Uric acid
  • Chronic kidney disease
  • Cardiovascular disease
  • Urate lowering treatment