Cardiac MRI measurements of pericardial adipose tissue volumes in patients on in-centre nocturnal hemodialysis

  • Sean Cai
  • Ron Wald
  • Djeven P. Deva
  • Mercedeh Kiaii
  • Ming-Yen Ng
  • Gauri R. Karur
  • Oblugbenga Bello
  • Zhuo Jun Li
  • Jonathon Leipsic
  • Laura Jimenez-Juan
  • Anish Kirpalani
  • Kim A. Connelly
  • Andrew T. YanEmail author
Original Article



Conversion from conventional hemodialysis (CHD) to in-centre nocturnal hemodialysis (INHD) is associated with left ventricular (LV) mass regression, but the underlying mechanisms are not fully understood. Using cardiac MRI (CMR), we examined the effects of INHD on epicardial adipose tissue (EAT) and paracardial adipose tissue (PAT), and the relationships between EAT, PAT and LV remodeling, biomarkers of nutrition, myocardial injury, fibrosis and volume.


We conducted a prospective multicenter cohort study of 37 patients transitioned from CHD to INHD and 30 patients on CHD (control). Biochemical markers and CMR were performed at baseline and 52 weeks. CMR images were analyzed by independent readers, blinded to order and treatment group.


Among 64 participants with complete CMR studies at baseline (mean age 54; 43% women), there were no significant differences in EAT index (60.6 ± 4.3 mL/m2 vs 64.2 ± 5.1 mL/m2, p = 0.99) or PAT index (60.0 ± 5.4 mL/m2 vs 53.2 ± 5.9 mL/m2, p = 0.42) between INHD and CHD groups. Over 52 weeks, EAT index and PAT index did not change significantly in INHD and CHD groups (p = 0.21 and 0.14, respectively), and the changes in EAT index and PAT index did not differ significantly between INHD and CHD groups (p = 0.30 and 0.16, respectively). Overall, changes in EAT index inversely correlated with changes in LV end-systolic volume index (LVESVI) but not LV end-diastolic volume index (LVEDVI), LV mass index (LVMI), and LV ejection fraction (LVEF). Changes in PAT index inversely correlated with changes in LVESVI, LVMI and positively correlated with changes in LVEF. There were no correlations between changes in EAT index or PAT index with changes in albumin, LDL, triglycerides, troponin-I, FGF-23, or NT-proBNP levels over 52 weeks (all p > 0.30).


INHD was not associated with any changes in EAT index and PAT index over 12 months. Changes in EAT index were not significantly associated with changes in markers of LV remodeling, nutrition, myocardial injury, fibrosis, volume status. In contrast, changes in PAT index, which paradoxically is expected to exert less paracrine effect on the myocardium, were correlated with changes in LVESVI, LVMI and LVEF. Larger and longer-term studies may clarify the role of PAT in cardiac remodeling with intensified hemodialysis. Identifier



Epicardial fat Cardiac MRI Dialysis Ventricular remodeling 



This study was supported by an operating grant from the Canadian Institutes of Health Research and a grant-in-aid from Heart and Stroke Foundation. The study sponsor had no role in the study design, data collection or analysis, interpretation of the findings, writing the manuscript, or the decision to submit the manuscript for publication. Identifier: NCT00718848.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

The study was approved by the research ethics boards of St. Michael's hospital and St. Paul’s Hospital (Vancouver, British Columbia).

Informed consent

All patients provided their written informed consent.


  1. 1.
    Canadian Institute for Health Information (2003) Canadian organ replacement register annual report: treatment of end-stage organ failure in Canada, 2003 to 2012. CIHI, OttawaGoogle Scholar
  2. 2.
    Curtis BM, Parfrey PS (2005) Congestive heart failure in chronic kidney disease: disease-specific mechanisms of systolic and diastolic heart failure and management. Cardiol Clin 23(3):275–284CrossRefGoogle Scholar
  3. 3.
    Wald R, Goldstein MB, Perl J, Kiaii M, Yuen D, Wald RM et al (2016) The association between conversion to in-centre nocturnal hemodialysis and left ventricular mass regression in patients with end-stage renal disease. Can J Cardiol 32(3):369–377CrossRefGoogle Scholar
  4. 4.
    Graham-Brown MP, McCann GP, Burton JO (2015) Epicardial adipose tissue in patients with end-stage renal disease on haemodialysis. Curr Opin Nephrol Hypertens 24(6):517–524CrossRefGoogle Scholar
  5. 5.
    Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC, Chiu CC et al (2008) Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes (Lond) 32(2):268–274CrossRefGoogle Scholar
  6. 6.
    Turkmen K, Kayikcioglu H, Ozbek O, Solak Y, Kayrak M, Samur C et al (2011) The relationship between epicardial adipose tissue and malnutrition, inflammation, atherosclerosis/calcification syndrome in ESRD patients. Clin J Am Soc Nephrol 6(8):1920–1925CrossRefGoogle Scholar
  7. 7.
    Erdur MF, Tonbul HZ, Ozbiner H, Ozcicek A, Ozcicek F, Akbas EM et al (2013) The relationship between atherogenic index of plasma and epicardial adipose tissue in hemodialysis and peritoneal dialysis patients. Ren Fail 35(9):1193–1198CrossRefGoogle Scholar
  8. 8.
    van Woerden G, Gorter TM, Westenbrink BD, Willems TP, van Veldhuisen DJ, Rienstra M (2018) Epicardial fat in heart failure patients with mid-range and preserved ejection fraction. Eur J Heart Fail 20(11):1559–1566CrossRefGoogle Scholar
  9. 9.
    Cordeiro AC, Amparo FC, Oliveira MA, Amodeo C, Smanio P, Pinto IM et al (2015) Epicardial fat accumulation, cardiometabolic profile and cardiovascular events in patients with stages 3–5 chronic kidney disease. J Intern Med 278(1):77–87CrossRefGoogle Scholar
  10. 10.
    Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA et al (2009) Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J 30(7):850–856CrossRefGoogle Scholar
  11. 11.
    Sicari R, Sironi AM, Petz R, Frassi F, Chubuchny V, De Marchi D et al (2011) Pericardial rather than epicardial fat is a cardiometabolic risk marker: an MRI vs echo study. J Am Soc Echocardiogr 24(10):1156–1162CrossRefGoogle Scholar
  12. 12.
    Rado SD, Lorbeer R, Gatidis S, Machann J, Storz C, Nikolaou K et al (2019) MRI-based assessment and characterization of epicardial and paracardial fat depots in the context of impaired glucose metabolism and subclinical left-ventricular alterations. Br J Radiol 92(1096):20180562CrossRefGoogle Scholar
  13. 13.
    Colak H, Kilicarslan B, Tekce H, Tanrisev M, Tugmen C, Aktas G et al (2015) Relationship between epicardial adipose tissue, inflammation and volume markers in hemodialysis and transplant patients. Ther Apher Dial 19(1):56–62CrossRefGoogle Scholar
  14. 14.
    Ulusal Okyay G, Okyay K, Polattas Solak E, Sahinarslan A, Pasaoglu O, Ayerden Ebinc F et al (2015) Echocardiographic epicardial adipose tissue measurements provide information about cardiovascular risk in hemodialysis patients. Hemodial Int 19(3):452–462CrossRefGoogle Scholar
  15. 15.
    Doesch C, Haghi D, Fluchter S, Suselbeck T, Schoenberg SO, Michaely H et al (2010) Epicardial adipose tissue in patients with heart failure. J Cardiovasc Magn Reson 12:40CrossRefGoogle Scholar
  16. 16.
    Nelson AJ, Worthley MI, Psaltis PJ, Carbone A, Dundon BK, Duncan RF et al (2009) Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume. J Cardiovasc Magn Reson 11:15CrossRefGoogle Scholar
  17. 17.
    Ong JP, Wald R, Goldstein MB, Leipsic J, Kiaii M, Deva DP et al (2019) Left ventricular strain analysis using cardiac magnetic resonance imaging in patients undergoing in-centre nocturnal haemodialysis. Nephrology (Carlton) 24(5):557–563CrossRefGoogle Scholar
  18. 18.
    Altun B, Tasolar H, Eren N, Binnetoglu E, Altun M, Temiz A et al (2014) Epicardial adipose tissue thickness in hemodialysis patients. Echocardiography 31(8):941–946CrossRefGoogle Scholar
  19. 19.
    Noori N, Yan AT, Kiaii M, Rathe A, Goldstein MB, Bello O et al (2017) Nutritional status after conversion from conventional to in-centre nocturnal hemodialysis. Int Urol Nephrol 49(8):1453–1461CrossRefGoogle Scholar
  20. 20.
    Ansaldo AM, Montecucco F, Sahebkar A, Dallegri F, Carbone F (2019) Epicardial adipose tissue and cardiovascular diseases. Int J Cardiol 278:254–260CrossRefGoogle Scholar
  21. 21.
    D’Marco LG, Bellasi A, Kim S, Chen Z, Block GA, Raggi P (2013) Epicardial adipose tissue predicts mortality in incident hemodialysis patients: a substudy of the renagel in new dialysis trial. Nephrol Dial Transplant 28(10):2586–2595CrossRefGoogle Scholar
  22. 22.
    Chang TI, Ngo V, Streja E, Chou JA, Tortorici AR, Kim TH et al (2017) Association of body weight changes with mortality in incident hemodialysis patients. Nephrol Dial Transplant 32(9):1549–1558PubMedGoogle Scholar
  23. 23.
    Tonbul HZ, Demir M, Altintepe L, Guney I, Yeter E, Turk S et al (2006) Malnutrition-inflammation-atherosclerosis (MIA) syndrome components in hemodialysis and peritoneal dialysis patients. Ren Fail 28(4):287–294CrossRefGoogle Scholar
  24. 24.
    Eriguchi R, Obi Y, Rhee CM, Chou JA, Tortorici AR, Mathew AT et al (2017) Changes in urine volume and serum albumin in incident hemodialysis patients. Hemodial Int 21(4):507–518CrossRefGoogle Scholar
  25. 25.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367(9507):356–367CrossRefGoogle Scholar
  26. 26.
    Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A et al (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359(6):584–592CrossRefGoogle Scholar

Copyright information

© Italian Society of Nephrology 2019

Authors and Affiliations

  • Sean Cai
    • 1
  • Ron Wald
    • 1
    • 2
  • Djeven P. Deva
    • 3
  • Mercedeh Kiaii
    • 4
  • Ming-Yen Ng
    • 5
  • Gauri R. Karur
    • 6
  • Oblugbenga Bello
    • 7
  • Zhuo Jun Li
    • 7
  • Jonathon Leipsic
    • 8
  • Laura Jimenez-Juan
    • 9
  • Anish Kirpalani
    • 3
  • Kim A. Connelly
    • 1
    • 7
  • Andrew T. Yan
    • 1
    • 3
    • 7
    Email author
  1. 1.Department of MedicineUniversity of TorontoTorontoCanada
  2. 2.Division of NephrologySt Michael’s HospitalTorontoCanada
  3. 3.Department of Medical Imaging, St Michael’s HospitalUniversity of TorontoTorontoCanada
  4. 4.Division of NephrologySt. Paul’s HospitalVancouverCanada
  5. 5.Department of Diagnostic RadiologyThe University of Hong KongHong KongChina
  6. 6.Toronto Joint Department of Medical ImagingUniversity Health NetworkTorontoCanada
  7. 7.Division of CardiologySt. Michael’s HospitalTorontoCanada
  8. 8.Department of Medical ImagingSt Paul’s HospitalVancouverCanada
  9. 9.Department of Medical Imaging, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoCanada

Personalised recommendations