Skip to main content
Log in

Vitamin D-neutralizing CYP24A1 expression, oncogenic mutation states and histological findings of human papillary thyroid cancer

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective

The aims of the present study were to examine gene and protein expression of the vitamin D-inactivating 24-hyroxylase (CYP24A1) and the activating 1-alpha-hydroxylase (CYP27B1) enzyme in human papillary thyroid cancer (PTC), furthermore, to investigate the association between CYP24A1 expression and numerous clinical, histological parameters and somatic oncogene mutation status of thyroid tumor tissues.

Materials and methods

Gene expression analysis was carried out in 100 Hungarian thyroid samples, both normal and papillary tumor tissue sections of the same patient. The specific mRNA to the selected genes was analyzed by TaqMan probe-based quantitative real-time RT-PCR. The somatic oncogene mutation states of BRAF, NRAS, HRAS and KRAS were also tested.

Results

CYP24A1 mRNA expression was markedly increased in 52 cases (52 %) of the examined papillary cancers compared with that of normal thyroid tissue. There was a tendency toward difference in the distribution of high-level CYP24A1 in the PTC accompanied with somatic oncogene mutation. Positive correlation was seen between increased CYP24A1 expression rate and a group of variables reflecting tumor malignity (mainly vascular invasion, lymph node metastasis, tumor size, hypothyreosis) by principal components analysis. No significant alteration was seen in CYP27B1 gene expression between neoplastic and normal tissues.

Conclusions

A definite alteration was seen in vitamin D3-inactivating CYP24A1 gene activity in PTC compared to their normal tissues on a relatively large patient population. Our findings raise the possibility that CYP24A1 may also directly be involved in thyroid carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chung M, Balk EM, Brendel M, Ip S, Lau J, Lee J, Lichtenstein A, Patel K, Raman G, Tatsioni A, Terasawa T, Trikalinos TA (2009) Vitamin D and calcium: a systematic review of health outcomes. Evid Rep Technol Assess 183:1–420

    Google Scholar 

  2. Krishnan AV, Trump DL, Johnson CS, Feldman D (2010) The role of vitamin D in cancer prevention and treatment. Endocrinol Metab Clin N Am 39(2):401–418

    Article  CAS  Google Scholar 

  3. Kriebitzsch C, Verlinden L, Eelen G, Tan BK, Van Camp M, Bouillon R, Verstuyf A (2009) The impact of 1,25(OH)2D3 and its structural analogs on gene expression in cancer cells—a microarray approach. Anticancer Res 29(9):3471–3483

    CAS  PubMed  Google Scholar 

  4. Horvath HC, Lakatos P, Kosa JP, Bacsi K, Borka K, Bises G, Nittke T, Hershberger PA, Speer G, Kallay E (2010) The candidate oncogene CYP24A1: a potential biomarker for colorectal tumorigenesis. J Histochem Cytochem 58(3):277–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Friedrich M, Rafi L, Mitschele T, Tilgen W, Schmidt W, Reichrath J (2003) Analysis of the vitamin D system in cervical carcinomas, breast cancer and ovarian cancer. Recent Results Cancer Res 164:239–246

    Article  CAS  PubMed  Google Scholar 

  6. Mimori K, Tanaka Y, Yoshinaga K, Masuda T, Yamashita K, Okamoto M, Inoue H, Mori M (2004) Clinical significance of the overexpression of the candidate oncogene CYP24 in esophageal cancer. Ann Oncol 15(2):236–241

    Article  CAS  PubMed  Google Scholar 

  7. Parise RA, Egorin MJ, Kanterewicz B, Taimi M, Petkovich M, Lew AM, Chuang SS, Nichols M, El-Hefnawy T, Hershberger PA (2006) CYP24, the enzyme that catabolizes the antiproliferative agent vitamin D, is increased in lung cancer. Int J Cancer 119(8):1819–1828

    Article  CAS  PubMed  Google Scholar 

  8. Horvath E, Lakatos P, Balla B, Kosa JP, Tobias B, Jozilan H, Borka K, Horvath HC, Kovalszky I, Szalay F (2012) Marked increase of CYP24A1 mRNA level in hepatocellular carcinoma cell lines following vitamin D administration. Anticancer Res 32(11):4791–4796

    CAS  PubMed  Google Scholar 

  9. Zhang Q, Kanterewicz B, Buch S, Petkovich M, Parise R, Beumer J, Lin Y, Diergaarde B, Hershberger PA (2012) CYP24 inhibition preserves 1alpha,25-dihydroxyvitamin D(3) anti-proliferative signaling in lung cancer cells. Mol Cell Endocrinol 355(1):153–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kosa JP, Horvath P, Wolfling J, Kovacs D, Balla B, Matyus P, Horvath E, Speer G, Takacs I, Nagy Z, Horvath H, Lakatos P (2013) CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells. World J Gastroenterol 19(17):2621–2628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Luo W, Yu WD, Ma Y, Chernov M, Trump DL, Johnson CS (2013) Inhibition of protein kinase CK2 reduces Cyp24a1 expression and enhances 1,25-dihydroxyvitamin D(3) antitumor activity in human prostate cancer cells. Cancer Res 73(7):2289–2297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sharma V, Fretwell D, Crees Z, Kerege A, Klopper JP (2010) Thyroid cancer resistance to vitamin D receptor activation is associated with 24-hydroxylase levels but not the ff FokI polymorphism. Thyroid 20(10):1103–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Laney N, Meza J, Lyden E, Erickson J, Treude K, Goldner W (2010) The prevalence of vitamin D deficiency is similar between thyroid nodule and thyroid cancer patients. Int J Endocrinol 2010:805716

    Article  PubMed Central  PubMed  Google Scholar 

  14. Stepien T, Krupinski R, Sopinski J, Kuzdak K, Komorowski J, Lawnicka H, Stepien H (2010) Decreased 1-25 dihydroxyvitamin D3 concentration in peripheral blood serum of patients with thyroid cancer. Arch Med Res 41(3):190–194

    Article  CAS  PubMed  Google Scholar 

  15. Clinckspoor I, Hauben E, Verlinden L, Van den Bruel A, Vanwalleghem L, Vander Poorten V, Delaere P, Mathieu C, Verstuyf A, Decallonne B (2012) Altered expression of key players in vitamin D metabolism and signaling in malignant and benign thyroid tumors. J Histochem Cytochem 60(7):502–511

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, Biddinger PW, Nikiforov YE (2006) Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30(2):216–222

    Article  PubMed  Google Scholar 

  17. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC–RAS–BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63(7):1454–1457

    CAS  PubMed  Google Scholar 

  18. Xing M (2007) BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 28(7):742–762

    Article  CAS  PubMed  Google Scholar 

  19. Paulson L, Shindo M, Schuff K, Corless C (2012) The role of molecular markers and tumor histological type in central lymph node metastasis of papillary thyroid carcinoma. Arch Otolaryngol Head Neck Surg 138(1):44–49

    Article  PubMed  Google Scholar 

  20. Basolo F, Torregrossa L, Giannini R, Miccoli M, Lupi C, Sensi E, Berti P, Elisei R, Vitti P, Baggiani A, Miccoli P (2010) Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J Clin Endocrinol Metab 95(9):4197–4205

    Article  CAS  PubMed  Google Scholar 

  21. Nikiforov YE, Nikiforova MN (2011) Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 7(10):569–580

    Article  CAS  PubMed  Google Scholar 

  22. Balla B, Kosa JP, Tobias B, Halaszlaki C, Takacs I, Horvath H, Speer G, Nagy Z, Horanyi J, Jaray B, Szekely E, Lakatos P (2011) Marked increase in CYP24A1 gene expression in human papillary thyroid cancer. Thyroid 21(4):459–460

    Article  CAS  PubMed  Google Scholar 

  23. Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys, Leiden

    Google Scholar 

  24. Jolliffe I (1986) Principal component analysis. Springer, New York

    Book  Google Scholar 

  25. Podani J (2001) SYN-TAX 2000. User’s Manual, Scientia

    Google Scholar 

  26. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R (2013) Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013:965212

    Article  PubMed Central  PubMed  Google Scholar 

  27. Albores-Saavedra J, Henson DE, Glazer E, Schwartz AM (2007) Changing patterns in the incidence and survival of thyroid cancer with follicular phenotype—papillary, follicular, and anaplastic: a morphological and epidemiological study. Endocr Pathol 18(1):1–7

    Article  PubMed  Google Scholar 

  28. Clinckspoor I, Verlinden L, Mathieu C, Bouillon R, Verstuyf A, Decallonne B (2013) Vitamin D in thyroid tumorigenesis and development. Prog Histochem Cytochem 48(2):65–98

    Article  PubMed  Google Scholar 

  29. Carpi A, Mechanick JI, Saussez S, Nicolini A (2010) Thyroid tumor marker genomics and proteomics: diagnostic and clinical implications. J Cell Physiol 224(3):612–619

    Article  CAS  PubMed  Google Scholar 

  30. Khadzkou K, Buchwald P, Westin G, Dralle H, Akerstrom G, Hellman P (2006) 25-hydroxyvitamin D3 1alpha-hydroxylase and vitamin D receptor expression in papillary thyroid carcinoma. J Histochem Cytochem 54(3):355–361

    Article  CAS  PubMed  Google Scholar 

  31. McLeod DS, Sawka AM, Cooper DS (2013) Controversies in primary treatment of low-risk papillary thyroid cancer. Lancet 381(9871):1046–1057

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Kalocsáné Piurkó Violetta (2nd Department of Pathology, Semmelweis University) for excellent technical assistance of paraffin-embedded tissue specimens. We would like to thank to Béla Iványi (Faculty of General Medicine, Department of Pathology, University of Szeged) who provided paraffin-embedded tissue samples. This work was supported by research Grant ETT 10-151/2009 from the Ministry of Health, Hungary.

Conflict of interest

All the authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Balla.

Additional information

B. Balla, B. Tobiás, P. Lakatos and I. Takács contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 116 kb)

Supplementary material 2 (DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balla, B., Tobiás, B., Kósa, J.P. et al. Vitamin D-neutralizing CYP24A1 expression, oncogenic mutation states and histological findings of human papillary thyroid cancer. J Endocrinol Invest 38, 313–321 (2015). https://doi.org/10.1007/s40618-014-0165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0165-7

Keywords

Navigation