Advertisement

Translations in Stimulus–Stimulus Pairing: Autoshaping of Learner Vocalizations

  • Stephanie P. da SilvaEmail author
  • April Michele Williams
Original Research
  • 27 Downloads

Abstract

Stimulus–stimulus pairing (SSP) is a procedure used by behavior analysis practitioners that capitalizes on respondent conditioning processes to elicit vocalizations. These procedures usually are implemented only after other, more customary methods (e.g., standard echoic training via modeling) have been exhausted. Unfortunately, SSP itself has mixed research support, probably because certain as-yet-unidentified procedural variations are more effective than others. Even when SSP produces (or increases) vocalizations, its effects can be short-lived. Although specific features of SSP differ across published accounts, fundamental characteristics include presentation of a vocal stimulus proximal with presentation of a preferred item. In the present article, we draw parallels between SSP procedures and autoshaping, review factors shown to affect autoshaping, and interpret autoshaping research for suggested SSP tests and applications. We then call for extended use and reporting of SSP in behavior-analytic treatments. Finally, three bridges created by this article are identified: basic-applied, respondent–operant, and behavior analysis with other sciences.

Keywords

Stimulus–stimulus pairing Verbal behavior Respondent conditioning Autoshaping Classical conditioning Translational research 

Notes

Acknowledgements

Funding for this work provided in part by University Grants Sabbatical Program at Columbus State University, Columbus, GA, USA. We thank Kayla Hansen for her assistance with procuring journal articles, Carolina Mendoza for her assistance with formatting the manuscript, and Sarah Hughes for her assistance with formatting of references. We also are deeply indebted to Patricia Eberhardt for sharing her insights on the SSP procedure with us and reviewing previous drafts of this manuscript.

References

  1. Akins, C. K. (1998). Context excitation and modulation of conditioned sexual behavior. Animal Learning & Behavior, 26(4), 416–426.  https://doi.org/10.3758/BF03199234.CrossRefGoogle Scholar
  2. Allan, R. W., & Zeigler, H. P. (1994). Autoshaping the pigeon’s gape response: Acquisition and topography as a function of reinforcer type and magnitude. Journal of the Experimental Analysis of Behavior, 62(2), 201–223.  https://doi.org/10.1901/jeab.1994.62-201.PubMedPubMedCentralCrossRefGoogle Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.CrossRefGoogle Scholar
  4. Anderson, R. I., & Spear, L. P. (2011). Autoshaping in adolescence enhances sign-tracking behavior in adulthood: Impact on ethanol consumption. Pharmacology, Biochemistry & Behavior, 98(2), 250–260.CrossRefGoogle Scholar
  5. Association of Professional Behavior Analysts. (2015). 2014 U.S. professional employment survey: A preliminary report. Resource document. Retrieved June 26, 2018. Apbahome.net. https://www.apbahome.net/default.aspx
  6. Atnip, G. W. (1977). Stimulus- and response-reinforcer contingencies in autoshaping, operant, classical, and omission training procedures in rats. Journal of the Experimental Analysis of Behavior, 28(1), 59–69.  https://doi.org/10.1901/jeab.1977.28-59.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Axelrod, S. (2017). A commentary on Critchfield and Reed: The fuzzy concept of applied behavior analysis research. The Behavior Analyst, 40, 167–171.  https://doi.org/10.1007/s40614-017-0117-6.CrossRefGoogle Scholar
  8. Baer, D. M., Wolf, M. M., & Risley, T. R. (1968). Some current dimensions of applied behavior analysis. Journal of Applied Behavior Analysis, 1(1), 91–97.  https://doi.org/10.1901/jaba.1968.1-91.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Balsam, P. D., & Payne, D. (1979). Intertrial interval and unconditioned stimulus durations in autoshaping. Animal Learning & Behavior, 7(4), 477–482.  https://doi.org/10.3758/BF03209705.CrossRefGoogle Scholar
  10. Balsam, P. D., & Schwartz, A. L. (1981). Rapid contextual conditioning in autoshaping. Journal of Experimental Psychology: Animal Behavior Processes, 7(4), 382–393.  https://doi.org/10.1037/0097-7403.7.4.382.PubMedGoogle Scholar
  11. Batsell Jr., W. R., & Batson, J. D. (1999). Augmentation of taste conditioning by a preconditioned odor. Journal of Experimental Psychology: Animal Behavior Processes.  https://doi.org/10.1037/0097-7403.25.3.374.PubMedGoogle Scholar
  12. Behavior Analyst Certification Board (2012). Fourth edition task list. Littleton, CO: Author.Google Scholar
  13. Behavior Analyst Certification Board. (2014). Professional and ethical compliance code for behavior analysts. Littleton, CO: Author.Google Scholar
  14. Behavior Analyst Certification Board. (2017). BCBA/BCaBA task list (5th ed.). Littleton, CO: Author.Google Scholar
  15. Bell, M. (2018). Winter is coming to the experimental analysis of behavior. Behavior Analysis: Research & Practice, 18(2), 184–192.  https://doi.org/10.1037/bar0000130.Google Scholar
  16. Bilbrey, J., & Winokur, S. (1973). Controls for and constraints on auto-shaping. Journal of the Experimental Analysis of Behavior, 20, 323–332.  https://doi.org/10.1901/jeab.1973.20-323.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bindra, D. (1972). A unified account of classical and operant training. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 453–481). New York, NY: Appleton-Century-Crofts.Google Scholar
  18. Blanchard, R., & Honig, W. K. (1976). Surprise value of food determines its effectiveness as a reinforcer. Journal of Experimental Psychology: Animal Behavior Processes, 2(1), 67–74.  https://doi.org/10.1037/0097-7403.2.1.67.Google Scholar
  19. Bloom, K., & Esposito, A. (1975). Social conditioning and its proper control procedures. Journal of Experimental Child Psychology, 19(2), 209–222.  https://doi.org/10.1016/0022-0965(75)90085-5.PubMedCrossRefGoogle Scholar
  20. Boughner, R. L., & Papini, M. R. (2003). Appetitive latent inhibition in rats: Now you see it (sign tracking), now you don’t (goal tracking). Learning & Behavior, 31(4), 387–392.  https://doi.org/10.3758/BF03195999.CrossRefGoogle Scholar
  21. Boughner, R. L., & Papini, M. R. (2008). Assessing the relationship between latent inhibition and the partial reinforcement extinction effect in autoshaping with rats. Pharmacology, Biochemistry, & Behavior,, 89, 432–443.  https://doi.org/10.1016/j.pbb.2008.01.019.CrossRefGoogle Scholar
  22. Boughner, R. L., Thomas, B. L., & Papini, M. R. (2004). Effects of nonreinforced preexposure to the context on autoshaping in rats: Methodological implications for demonstrations of latent inhibition. International Journal of Comparative Psychology, 17, 168–184.Google Scholar
  23. Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychological Bulletin, 114(1), 80–99.  https://doi.org/10.1037/0033-2909.114.1.80.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bouton, M. E., & Peck, C. A. (1989). Context effects on conditioning, extinction, and reinstatement in an appetitive conditioning preparation. Animal Learning & Behavior, 17(2), 188–198.  https://doi.org/10.3758/BF03207634.CrossRefGoogle Scholar
  25. Breland, K., & Breland, M. (1961). The misbehavior of organisms. American Psychologist, 16(11), 681–684.  https://doi.org/10.1037/h0040090.CrossRefGoogle Scholar
  26. Brown, B. L., Hemmes, N. S., de Vaca, S. C., & Pagano, C. (1993). Sign and goal tracking during delay and trace autoshaping in pigeons. Animal Learning & Behavior, 21(4), 360–368.  https://doi.org/10.3758/BF03198002.CrossRefGoogle Scholar
  27. Brown, P. L., & Jenkins, H. M. (1968). Auto-Shaping of the pigeon’s key-peck. Journal of the Experimental Analysis of Behavior, 11(1), 1–8.  https://doi.org/10.1901/jeab.1968.11-1.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Burgos, J. E. (2007). Autoshaping and automaintenance: A neural-network approach. Journal of the Experimental Analysis of Behavior, 88(1), 115–130.  https://doi.org/10.1901/jeab.2007.75-04.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Burns, M., & Domjan, M. (2001). Topography of spatially directed conditioned responding: Effects of context and trial duration. Journal of Experimental Psychology: Animal Behavior Processes, 27(3), 269–278.  https://doi.org/10.1037/0097-7403.27.3.269.PubMedPubMedCentralGoogle Scholar
  30. Byrom, N. C., & Murphy, R. A. (2018). Individual differences are more than a gene x environment interaction: The role of learning. Journal of Experimental Psychology: Animal Learning & Cognition, 44(1), 36–55.  https://doi.org/10.1037/xan0000157.Google Scholar
  31. Carroll, R. A., & Klatt, K. P. (2008). Using stimulus-stimulus pairing and direct reinforcement to teach verbal behavior to young children with autism. Analysis of Verbal Behavior, 24(1), 135–146.  https://doi.org/10.1007/BF03393062.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chang, R. C., Stout, S., & Miller, R. R. (2004). Comparing excitatory backward and forward conditioning. Quarterly Journal of Experimental Psychology, 57B(1), 1–23.  https://doi.org/10.1080/02724990344000015.CrossRefGoogle Scholar
  33. Cleland, G. C., & Davey, G. C. L. (1982). The effects of satiation and reinforcer devaluation on signal-centered behavior in the rat. Learning & Motivation, 13(3), 343–360.  https://doi.org/10.1016/0023-9690(82)90014-5.CrossRefGoogle Scholar
  34. Cleland, G. G., & Davey, G. C. L. (1983). Autoshaping of the rat: The effects of localizable visual and auditory signals for food. Journal of the Experimental Analysis of Behavior, 40(1), 47–56.  https://doi.org/10.1901/jeab.1983.40-47.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cooper, J. O., Heron, T. E., & Heward, W. L. (2020). Applied behavior analysis (3rd ed.). Hoboken, NJ: Pearson.Google Scholar
  36. Costa, D. S. J., & Boakes, R. A. (2009). Context blocking in rat autoshaping: Sign-tracking versus goal tracking. Learning & Motivation, 40(2), 178–185.  https://doi.org/10.1016/j.lmot.2008.11.001.CrossRefGoogle Scholar
  37. Critchfield, T. S., & Reed, D. D. (2017). The fuzzy concept of applied behavior analysis research. The Behavior Analyst, 40(1), 123–159.  https://doi.org/10.1007/s40614-017-0093-x.CrossRefGoogle Scholar
  38. Davey, G. C. L., & Cleland, G. G. (1982). Topography of signal-centered behavior in the rat: Effects of deprivation state and reinforcer type. Journal of the Experimental Analysis of Behavior, 38(3), 291–304.  https://doi.org/10.1901/jeab.1982.38-291.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Davison, M. (2018). The experimental analysis of behavior: Whence and thence? Behavior Analysis: Research & Practice, 18(2), 134–143.  https://doi.org/10.1037/bar0000101.Google Scholar
  40. Davison, M., & Baum, W. M. (2006). Do conditional reinforcers count? Journal of the Experimental Analysis of Behavior, 86(3), 269–283.  https://doi.org/10.1901/jeab.2006.56-05.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dickinson, A., & Mackintosh, N. J. (1978). Classical conditioning in animals. Annual Review of Psychology, 29, 587–612.  https://doi.org/10.1146/annurev.ps.29.020178.003103.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Dinsmoor, J. A. (1995). Stimulus control: Part II. The Behavior Analyst, 18(2), 253–259.  https://doi.org/10.1007/BF03392712.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dinsmoor, J. A., Dougan, J. D., Pfister, J., & Thiels, E. (1992). The autoshaping procedure as a residual block clock. Journal of the Experimental Analysis of Behavior, 58(2), 265–276.  https://doi.org/10.1901/jeab.1992.58-265.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Domjan, M. (2016). Elicited versus emitted behavior: Time to abandon the distinction. Journal of the Experimental Analysis of Behavior, 105(2), 231–245.  https://doi.org/10.1002/jeab.197.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Donahoe, J. W. (2017). Behavior analysis and neuroscience: Complementary disciplines. Journal of the Experimental Analysis of Behavior, 107(3).  https://doi.org/10.1002/jeab.251.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Donahoe, J. W., & Vegas, R. (2004). Pavlovian conditioning: The CS-UR relation. Journal of Experimental Psychology: Animal Behavior Processes, 30(1), 17–33.  https://doi.org/10.1037/0097-7403.30.1.17.PubMedPubMedCentralGoogle Scholar
  47. Donahoe, J. W., & Vegas, R. (2011). Respondent (Pavlovian) conditioning. In W. W. Fisher, C. C. Piazza, & H. S. Roane (Eds.), Handbook of applied behavior analysis (pp. 17–33). Guilford: New York, NY.Google Scholar
  48. Doremus-Fitzwater, T. L., & Spear, L. P. (2011). Amphetamine-induced incentive sensitization of sign-tracking behavior in adolescent and adult female rats. Behavioral Neuroscience, 125(4), 661–667.  https://doi.org/10.1037/a0023763.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Downing, K., & Neuringer, A. (1976). Autoshaping as a function of prior food presentations. Journal of the Experimental Analysis of Behavior, 26(3), 463–469.  https://doi.org/10.1901/jeab.1976.26-463.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dozier, C. L., Iwata, B. A., Thomason-Sassi, J., Worsdell, A. S., & Wilson, D. M. (2012). A comparison of two pairing procedures to establish praise as a reinforcer. Journal of Applied Behavior Analysis, 45, 721–735.  https://doi.org/10.1901/jaba.2012.45-721.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Drash, P., High, R., & Tudor, R. M. (1999). Using mand training to establish an echoic repertoire in young children with autism. Analysis of Verbal Behavior, 16, 29–44.  https://doi.org/10.1007/BF03392945.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Drew, M. R., Yang, C., Ohyama, T., & Balsam, P. D. (2004). Temporal specificity of extinction in autoshaping. Journal of Experimental Psychology: Animal Behavior Processes, 30(3), 163–176.  https://doi.org/10.1037/0097-7403.30.3.163.PubMedGoogle Scholar
  53. Durlach, P. J. (1983). Effect of signaling intertrial unconditioned stimuli in autoshaping. Journal of Experimental Psychology: Animal Behavior Processes, 9(4), 374–389.  https://doi.org/10.1037/0097-7403.9.4.374.PubMedGoogle Scholar
  54. Durlach, P. J. (1989). Role of signals for unconditioned stimulus absence in the sensitivity of autoshaping to contingency. Journal of Experimental Psychology: Animal Behavior Processes, 15(3), 202–211.  https://doi.org/10.1037/0097-7403.15.3.202.Google Scholar
  55. Durlach, P. J., McQuoid, L. M., & Regehr, G. (1990). A latent effect of US preexposure in autoshaping. The Psychological Record, 40(3), 347–358.  https://doi.org/10.1007/BF03399545.CrossRefGoogle Scholar
  56. Eberhardt, P. (2019). Varying inter-stimulus and inter-trial intervals during stimulus-stimulus pairing: A translational extension of autoshaping (Unpublished master’s thesis). Rollins College, Winter Park, Fl. Retrieved from https://scholarship.rollins.edu/mabacs_thesis/14
  57. Engberg, L. A., Hansen, G., Welker, R. L., & Thomas, D. R. (1972). Acquisition of key-pecking via autoshaping as a function of prior experience: "Learned laziness?". Science, 178(4064), 1002–1004.  https://doi.org/10.1126/science.178.4064.1002.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Esch, B. E., Carr, J. E., & Grow, L. L. (2009). Evaluation of an enhanced stimulus-stimulus pairing procedure to increase early vocalizations of children with autism. Journal of Applied Behavior Analysis, 42(2), 225–241.  https://doi.org/10.1901/jaba.2009.42-225.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Esch, B. E., Carr, J. E., & Michael, J. (2005). Evaluating stimulus-stimulus pairing and direct reinforcement in the establishment of an echoic repertoire of children diagnosed with autism. Analysis of Verbal Behavior, 21(1), 43–58.  https://doi.org/10.1007/BF03393009.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Escobar, M., Arcediano, F., & Miller, R. R. (2001a). Conditions favoring retroactive interference between antecedent events (cue competition) and between subsequent events (outcome competition). Psychonomic Bulletin & Review, 8(4), 691–697.  https://doi.org/10.3758/BF03196205.CrossRefGoogle Scholar
  61. Escobar, M., Matute, H., & Miller, R. R. (2001b). Cues trained apart compete for behavioral control in rats: Convergence with the associative interference literature. Journal of Experimental Psychology: General, 130(1), 97–115.  https://doi.org/10.1037/0096-3445.130.1.97.CrossRefGoogle Scholar
  62. Escobar, M., & Miller, R. R. (2004). A review of the empirical laws of basic learning in Pavlovian conditioning. International Journal of Comparative Psychology, 17(2), 279–303.Google Scholar
  63. Fahmie, T. A., & Iwata, B. A. (2011). Topographical and functional properties of precursors to severe problem behavior. Journal of Applied Behavior Analysis, 44(4), 993–997.  https://doi.org/10.1901/jaba.2011.44-993.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Farthing, G. W. (1971). Effect of a signal previously paired with free food on operant response rate in pigeons. Psychonomic Science, 23(5), 343–344.  https://doi.org/10.3758/BF03336142.CrossRefGoogle Scholar
  65. Flagel, S. B., Watson, S. J., Robinson, T. E., & Akil, H. (2007). Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology, 191(3), 599–607.  https://doi.org/10.1007/s00213-006-0535-8.PubMedCrossRefGoogle Scholar
  66. Gamzu, E., & Schwam, E. (1974). Autoshaping and automaintenance of a key-press response in squirrel monkeys. Journal of the Experimental Analysis of Behavior, 21(2), 361–371.  https://doi.org/10.1901/jeab.1974.21-361.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gamzu, E., & Schwartz, B. (1973). The maintenance of key pecking by stimulus-contingent and response-independent food presentation. Journal of the Experimental Analysis of Behavior, 19(1), 65–72.  https://doi.org/10.1901/jeab.1973.19-65.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gamzu, E., & Williams, D. R. (1971). Classical conditioning of a complex skeletal response. Science, 171(3974), 923–925.  https://doi.org/10.1126/science.171.3974.923.PubMedCrossRefGoogle Scholar
  69. Gamzu, E., & Williams, D. R. (1973). Associative factors underlying the pigeon’s key pecking in autoshaping procedures. Journal of the Experimental Analysis of Behavior, 19(2), 225–232.  https://doi.org/10.1901/jeab.1973.19-225.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Garcia, J., & Koelling, R. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4(1), 123–124.CrossRefGoogle Scholar
  71. Garcia-Fuster, M. J., Parsegian, A., Watson, S. J., Akil, H., & Flagel, S. B. (2017). Adolescent cocaine exposure enhances goal-tracking behavior and impairs hippocampal cell genesis selectively in adult bred low-responder rats. Psychopharmacology, 234(8), 1293–1305.  https://doi.org/10.1007/s00213-017-4566-0.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Gardner, W. M. (1969). Auto-shaping in bobwhite quail. Journal of the Experimental Analysis of Behavior, 12(2), 279–281.  https://doi.org/10.1901/jeab.1969.12-279.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gibbon, J., & Balsam, P. (1981). Spreading association in time. In C. M. Locurto, H. S. Terrace, & J. Gibbon (Eds.), Autoshaping and conditioning theory (pp. 219–253). New York, NY: Academic Press.Google Scholar
  74. Goldstein, L. H., & Oakley, D. A. (1989). Autoshaping in macrencephalic rats. Behavioral Neuroscience, 103(3), 566–573.  https://doi.org/10.1037/0735-7044.103.3.566.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Gomez-Sancho, L. E., Fernandez-Serra, F., & Arias, M. F. (2013). Summation in autoshaping with compounds formed by the rapid alternation of elements. Learning & Motivation, 44(2), 93–103.  https://doi.org/10.1016/j.lmot.2012.08.002.CrossRefGoogle Scholar
  76. Gonzalez, F. A. (1973). Effects of partial reinforcement (25%) in an autoshaping procedure. Bulletin of the Psychonomic Society, 2(5), 299–301.  https://doi.org/10.3758/BF03329280.CrossRefGoogle Scholar
  77. Gonzalez, F. A. (1974). Effects of varying the percentage of key illuminations paired with food in a positive automaintenance procedure. Journal of the Experimental Analysis of Behavior, 22(3), 483–490.  https://doi.org/10.1901/jeab.1974.22-483.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Gottlieb, D. A. (2004). Acquisition with partial and continuous reinforcement in pigeon autoshaping. Animal Learning & Behavior, 32(3), 321–334.  https://doi.org/10.3758/BF03196031.CrossRefGoogle Scholar
  79. Gottlieb, D. A. (2006). Effects of partial reinforcement and time between reinforced trials on terminal response rate in pigeon autoshaping. Behavioural Processes, 72(1), 6–13.  https://doi.org/10.1016/j.beproc.2005.11.008.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Grau, J. W., & Rescorla, R. A. (1984). Role of context in autoshaping. Journal of Experimental Psychology: Animal Behavior Processes, 10(3), 324–332.  https://doi.org/10.1037/0097-7403.10.3.324.Google Scholar
  81. Greer, R. D., Pistoljevic, N., Cahill, C., & Du, L. (2011). Effects of conditioning voices as reinforcers for listener responses on rate of learning, awareness, and preference for listening to stories in preschoolers with autism. Analysis of Verbal Behavior, 27(1), 103–124.  https://doi.org/10.1007/BF03393095.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hamilton, B. E., & Silberberg, A. (1978). Contrast and autoshaping in multiple schedules varying reinforcer rate and duration. Journal of the Experimental Analysis of Behavior, 30(1), 107–122.  https://doi.org/10.1901/jeab.1978.30-107.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hearst, E., & Jenkins, H. M. (1974). Sign tracking: The stimulus-reinforcer relation and directed action. Austin, TX: Psychonomic Society.Google Scholar
  84. Hilgard, E. R. (1937). The relationship between the conditioned response and conventional learning experiments. Psychological Bulletin, 34(2), 61–102.  https://doi.org/10.1037/h0052972.CrossRefGoogle Scholar
  85. Hirsh, J. L., Stockwell, F., & Walker, D. (2014). The effects of contingent caregiver imitation of infant vocalizations: A comparison of multiple caregivers. Analysis of Verbal Behavior, 30(1), 20–28.  https://doi.org/10.1007/s40616-014-0008-9.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hitzing, E. W., & Safar, T. (1970). Auto shaping: The conditions necessary for its development and maintenance. The Psychological Record, 20(3), 347–351.  https://doi.org/10.1007/BF03393952.CrossRefGoogle Scholar
  87. Holland, P. C. (1980). CS-US interval as a determinant of the form of Pavlovian appetitive conditioned responses. Journal of Experimental Psychology: Animal Behavior Processes.  https://doi.org/10.1037/0097-7403.6.2.155.CrossRefGoogle Scholar
  88. Holland, P. C. (1992). Occasion setting in Pavlovian conditioning. Psychology of Learning & Motivation: Advances in Research & Theory, 28, 69–125.CrossRefGoogle Scholar
  89. Holland, P. C. (2016). Effects of amygdala lesions on overexpectation phenomena in food cup approach and autoshaping procedures. Behavioral Neuroscience, 130(4), 357–375.  https://doi.org/10.1037/bne0000149.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Holland, P. C., Asem, J. S. A., Galvin, C. P., Keeney, C. H., Hsu, M., Miller, A., & Zhou, V. (2014). Blocking in autoshaped lever-pressing procedures. Learning & Behavior, 42(1), 1–21.  https://doi.org/10.3758/s13420-013-0120-z.CrossRefGoogle Scholar
  91. Honey, R. C., & Hall, G. (1989). Acquired equivalence and distinctiveness of cues. Journal of Experimental Psychology: Animal Behavior Processes, 15(4), 338–346.  https://doi.org/10.1037/0097-7403.15.4.338.PubMedPubMedCentralGoogle Scholar
  92. Honey, R. C., Willis, A., & Hall, G. (1990). Context specificity in pigeon autoshaping. Learning & Motivation, 21(2), 125–136.  https://doi.org/10.1016/0023-9690(90)90015-G.CrossRefGoogle Scholar
  93. Hursh, S. R., Navarick, D. J., & Fantino, E. (1974). “Automaintenance”: The role of reinforcement. Journal of the Experimental Analysis of Behavior, 21(1), 112–124.  https://doi.org/10.1901/jeab.1974.21-117.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Jenkins, H. M., Barnes, R. A., & Barrera, F. J. (1981). Why autoshaping depends on trial spacing. In C. M. Locurto, H. S. Terrace, & J. Gibbon (Eds.), Autoshaping and conditioning theory (pp. 255–284). New York, NY: Academic Press.Google Scholar
  95. Jenkins, H. M., & Moore, B. R. (1973). The form of the auto-shaped response with food or water reinforcers. Journal of the Experimental Analysis of Behavior, 20(2), 163–181.  https://doi.org/10.1901/jeab.1973.20-163.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kaplan, P. S. (1984). Importance of relative temporal parameters in trace autoshaping: From excitation to inhibition. Journal of Experimental Psychology: Animal Behavior Processes, 10(2), 113–126.  https://doi.org/10.1037/0097-7403.8.2.187.PubMedPubMedCentralGoogle Scholar
  97. Kaplan, P. S., & Hearst, E. (1982). Bridging temporal gaps between CS and US in autoshaping: Insertion of other stimuli before, during, and after CS. Journal of Experimental Psychology: Animal Behavior Processes, 8(2), 187–203.  https://doi.org/10.1037/0097-7403.8.2.187.PubMedPubMedCentralGoogle Scholar
  98. Kearns, D. N., Gomez-Serrano, M. A., Weiss, S. J., & Riley, A. L. (2006). A comparison of Lewis and Fischer rat strains on autoshaping (sign-tracking), discrimination reversal learning and negative automaintenance. Behavioral Brain Research, 169(2), 193–200.CrossRefGoogle Scholar
  99. Kearns, D. N., & Weiss, S. J. (2004). Sign-tracking (autoshaping) in rats: A comparison of cocaine and food as unconditioned stimuli. Animal Learning & Behavior, 32(4), 463–476.  https://doi.org/10.3758/BF03196042.CrossRefGoogle Scholar
  100. Kearns, D. N., & Weiss, S. J. (2007). Recovery of Pavlovian sign-tracking (autoshaping) following the discontinuation of inter-trial interval food in rats. Behavioural Processes, 75, 307–311.  https://doi.org/10.1016/j.beproc.2007.04.001.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Kehoe, E. J., Gibbs, C. M., Garcia, E., & Gormezano, I. (1979). Associative transfer and stimulus selection in classical conditioning of the rabbit’s nictitating membrane response to serial compound CSs. Journal of Experimental Psychology: Animal Behavior Processes, 69(2), 226–231.  https://doi.org/10.1037/0097-7403.5.1.1.PubMedPubMedCentralGoogle Scholar
  102. Khallad, Y., & Moore, J. (1996). Blocking, unblocking, and overexpectation in autoshaping with pigeons. Journal of the Experimental Analysis of Behavior, 65(3), 575–591.  https://doi.org/10.1901/jeab.1996.65-575.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Killeen, P. R. (2003). Complex dynamic processes in sign tracking with an omission contingency (negative automaintenance). Journal of Experimental Psychology: Animal Behavior Processes, 29(1), 49-61.  https://doi.org/10.1037/bar0000100 Google Scholar
  104. Killeen, P. R. (2018). The futures of the experimental analysis of behavior. Behavior Analysis: Research & Practice, 18(2), 124–133.  https://doi.org/10.1037/bar0000100.Google Scholar
  105. Krantz, D. L. (1971). The separate worlds of operant and non-operant psychology. Journal of Applied Behavior Analysis, 4(1), 61–70.  https://doi.org/10.1901/jaba.1971.4-61.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Lepper, T. L., & Petursdottir, A. I. (2017). Effects of response-contingent stimulus pairing on vocalizations of nonverbal children with autism. Journal of Applied Behavior Analysis, 50(4), 756–774.  https://doi.org/10.1002/jaba.415.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Lepper, T. L., Petursdottir, A. I., & Esch, B. E. (2013). Effects of operant discrimination training on the vocalizations of nonverbal children with autism. Journal of Applied Behavior Analysis, 46(3), 656–661.  https://doi.org/10.1002/jaba.55.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Likely, D. G. (1974). Autoshaping in the rhesus monkey. Animal Learning & Behavior, 2(3), 203–206.  https://doi.org/10.3758/BF03199178.CrossRefGoogle Scholar
  109. Locurto, C., Terrace, H. S., & Gibbon, J. (1976). Autoshaping, random control, and omission training in the rat. Journal of the Experimental Analysis of Behavior, 26(3), 451–462.  https://doi.org/10.1901/jeab.1976.26-451.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Lucas, G. A., & Wasserman, E. A. (1982). US duration and local trial spacing affect autoshaped responding. Animal Learning & Behavior, 10(4), 490–498.  https://doi.org/10.3758/BF03212289.CrossRefGoogle Scholar
  111. Matute, H., & Pineño, O. (1998). Stimulus competition in the absence of compound conditioning. Animal Learning & Behavior, 26(1), 3–14.  https://doi.org/10.3758/BF03199157.CrossRefGoogle Scholar
  112. Mazur, J. E. (2017). Learning and behavior (8th ed.). New York, NY: Taylor & Francis.Google Scholar
  113. McSweeney, F. K., Swindell, S., & Weatherly, J. N. (1996). Within-Session changes in responding during autoshaping and automaintenance procedures. Journal of the Experimental Analysis of Behavior.  https://doi.org/10.1901/jeab.1996.66-51.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Meyer, H. C., & Bucci, D. J. (2016). Age difference in appetitive Pavlovian conditioning and extinction in rats. Physiology & Behavior, 167, 354–362.  https://doi.org/10.1016/j.physbeh.2016.10.004.CrossRefGoogle Scholar
  115. Michael, J. (1984). Verbal behavior. Journal of the Experimental Analysis of Behavior, 42(3), 363–376.  https://doi.org/10.1901/jeab.1984.42-363.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Miguel, C. F., Carr, J. E., & Michael, J. (2002). The effects of a stimulus-stimulus pairing procedure on the vocal behavior of children diagnosed with autism. Analysis of Verbal Behavior, 18(1), 3–13.  https://doi.org/10.1007/BF03392967.CrossRefGoogle Scholar
  117. Miguez, G., Cham, H. X., & Miller, R. R. (2012). Spontaneous recovery and ABC renewal from retroactive cue interference. Learning & Behavior, 40(1), 42–53.  https://doi.org/10.3758/s13420-011-0044-4.CrossRefGoogle Scholar
  118. Miguez, G., Laborda, M. A., & Miller, R. R. (2014). Retrospective revaluation of associative retroactive cue interference. Learning & Behavior, 42(1), 47–57.  https://doi.org/10.3758/s13420-013-0123-9.CrossRefGoogle Scholar
  119. Miliotis, A., Sidener, T. M., Reeve, K. F., Carbone, V., Sidener, D. W., Rader, L., & Delmolino, L. (2012). An evaluation of the number of presentations of target sounds during stimulus-stimulus pairing trials. Journal of Applied Behavior Analysis, 45(4), 809–813.  https://doi.org/10.9101/jaba.2012.45-809.
  120. Miller, R. R., & Matute, H. (1998). Competition between outcomes. Psychological Science, 9(2), 146–149.  https://doi.org/10.1111/1467-9280.00028.CrossRefGoogle Scholar
  121. Muething, C. S., Falcomata, T. S., Ferguson, R., Swinnea, S., & Shpall, C. (2018). An evaluation of delay to reinforcement and mand variability during functional communication training. Journal of Applied Behavior Analysis, 51(2), 263–275.  https://doi.org/10.1002/jaba.441.PubMedCrossRefGoogle Scholar
  122. Myers, A. Mc. (1981). Autoshaping Infant Vocalizations (Unpublished doctoral dissertation). Digital Commons at Utah State University, Logan, UT. Retrieved from https://digitalcommons.usu.edu/etd/5899.
  123. Naeem, M., & White, N. M. (2016). Parallel learning in an autoshaping paradigm. Behavioral Neuroscience, 130(4), 376-392.  https://doi.org/10.1037/bne0000154.PubMedCrossRefGoogle Scholar
  124. Nasser, H. M., Lafferty, D. S., Lesser, E. N., Bacharach, S. Z., & Calu, D. J. (2018). Disconnection of basolateral amygdala and insular cortex disrupts conditioned approach in Pavlovian lever autoshaping. Neurobiology of Learning & Memory, 147, 35-45.  https://doi.org/10.1016/j.nlm.2017.11.010.PubMedCrossRefGoogle Scholar
  125. National Autism Center. (2015). Findings and conclusions: National standards project, phase 2. Randolph, MA: Author.Google Scholar
  126. Newlin, R. J., & LoLordo, V. M. (1976). A comparison of pecking generated by serial, delay, and trace autoshaping procedures. Journal of the Experimental Analysis of Behavior, 25(2), 227-241.  https://doi.org/10.1901/jeab.1976.25-227.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Nilsson, J., Kristiansen, T. S., Fosseidengen, J. E., Ferno, A., & van den Bos, R. (2008). Sign- and goal-tracking in Atlantic cod (Gadus morhua). Animal Cognition, 11, 651-659.  https://doi.org/10.1007/s10071-008-0155-2.PubMedCrossRefGoogle Scholar
  128. Normand, M. P., & Knoll, M. L. (2006). The effects of a stimulus-stimulus pairing procedure on the unprompted vocalizations of a young child diagnosed with autism. Analysis of Verbal Behavior, 22(1), 81-85.  https://doi.org/10.1007/BF03393028.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Oller, V. (2014). Stimulus-Stimulus pairing concurrent with direct reinforcement and the acquisition of early vocalizations (Unpublished master’s thesis). The School of Professional Psychology at Forest Institute, Springfield, MO.Google Scholar
  130. Papachristos, E. B., & Gallistel, C. R. (2006). Autoshaped head poking in the mouse: A quantitative analysis of the learning curve. Journal of the Experimental Analysis of Behavior, 85, 293–308.  https://doi.org/10.1901/jeab.2006.71-05 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Parker, R. I., & Vannest, K. (2009). An improved effect size for single-case research: Nonoverlap of all pairs. Behavior Therapy, 40(4), 357-367.  https://doi.org/10.1016/j.beth.2008.10.006.CrossRefGoogle Scholar
  132. Pear, J. J., & Eldridge, G. D. (1984). The operant-respondent distinction: Future directions. Journal of the Experimental Analysis of Behavior, 42(3), 453-467.  https://doi.org/10.1901/jeab.1984.42-453.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Pelaez, M., Virues-Ortega, J., & Gewirtz, J. L. (2011). Reinforcement of vocalizations through contingent vocal imitation. Journal of Applied Behavior Analysis, 44(1), 33-40.  https://doi.org/10.1901/jaba.2011.44-33.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Petursdottir, A. I., Carp, C. L., Matthies, D. W., & Esch, B. E. (2011). Analyzing stimulus-stimulus pairing effects on preferences for speech sounds. Analysis of Verbal Behavior, 27(1), 45-60.  https://doi.org/10.1007/BF03393091.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Petursdottir, A. I., & Lepper, T. I. (2015). Inducing novel vocalizations by conditioning speech sounds as reinforcers. Behavior Analysis in Practice, 8(2), 223-232.  https://doi.org/10.1007/s4617-015-0088-6.
  136. Picker, M., & Poling, A. (1982). Choice as a dependent measure in autoshaping: Sensitivity to frequency and duration of food presentation. Journal of the Experimental Analysis of Behavior, 37(3), 393-406.  https://doi.org/10.1901/jeab.1982.37-393.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Pithers, R. T. (1985). The roles of event contingencies and reinforcement in human autoshaping and omission responding. Learning & Motivation, 16(2), 210-237.  https://doi.org/10.1016/0023-9690(85)90013-X.CrossRefGoogle Scholar
  138. Ploog, B. O. (2008). Summation and subtraction using a modified autoshaping procedure in pigeons. Behavioural Processes, 78(2), 259-268.  https://doi.org/10.1016/j.beproc.2008.02.015.PubMedCrossRefGoogle Scholar
  139. Poulson, C. L. (1984). Operant theory and methodology in infant vocal conditioning. Journal of Experimental Child Psychology, 38(1), 103-113.  https://doi.org/10.1016/0022-0965(84)90021.
  140. Powell, R. A. Honey, P. L., & Symbaluk, D. G. (2013). Introduction to Learning and Behavior. Wadsworth: Belmont, CA.Google Scholar
  141. Purdy, J. E., Roberts, A. C., & Garcia, C. A. (1999). Sign tracking in cuttlefish (Sepia officinalis). Journal of Comparative Psychology, 113(4), 443-449.  https://doi.org/10.1037/0735-7036.113.4.443.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Rachlin, H. (1969). Autoshaping of key pecking in pigeons with negative reinforcement. Journal of the Experimental Analysis of Behavior, 12(4), 521-531.  https://doi.org/10.1901/jeab.1969.12-521.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Rachlin, H. (2018). Where do we go from here? Behavior Analysis: Research & Practice, 18(2), 119-123.  https://doi.org/10.1037/bar0000098.Google Scholar
  144. Rader, L., Sidener, T. M., Reeve, K. F., Sidener, D. W., Delmolino, L., Miliotis, A., & Carbone, V. (2014). Stimulus-stimulus pairing of vocalizations: A systematic replication. Analysis of Verbal Behavior, 30(1), 69-74.  https://doi.org/10.1007/s40616-014-0012-0.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Reboreda, J. C., & Kacelnik, A. (1993). The role of autoshaping in cooperative two-player games between starlings. Journal of the Experimental Analysis of Behavior, 60(1), 67-83.  https://doi.org/10.1901/jeab.1993.60-67.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Rehfeldt, R. A., & Hayes, L. J. (1998). The operant-respondent distinction revisited: Toward an understanding of stimulus equivalence. The Psychological Record, 48(2), 187-210.  https://doi.org/10.1007/BF03395266.CrossRefGoogle Scholar
  147. Rescorla, R. A. (1982). Effect of a stimulus intervening between CS and US in autoshaping. Journal of Experimental Psychology: Animal Behavior Processes, 8(2), 131-141.  https://doi.org/10.1037/0097-7403.8.2.131.PubMedGoogle Scholar
  148. Rescorla, R. A. (1984). Associations between Pavlovian CSs and context. Journal of Experimental Psychology: Animal Behavior Processes, 10(2), 195-204.  https://doi.org/10.1037/0097-7403.10.2.195.Google Scholar
  149. Rescorla, R. A. (1989). Redundant treatments of neutral and excitatory stimuli in autoshaping. Journal of Experimental Psychology: Animal Behavior Processes, 15(3), 212-223.  https://doi.org/10.1037/0097-7403.15.3.212.Google Scholar
  150. Rescorla, R. A. (1999). Within-subject partial reinforcement extinction effect in autoshaping. Quarterly Journal of Experimental Psychology, 52B (1), 75-87.  https://doi.org/10.1080/713932693.
  151. Rescorla, R. A., & Coldwell, S. E. (1995). Summation in autoshaping. Animal Learning & Behavior, 23(3), 314-326.  https://doi.org/10.3758/BF03198928.CrossRefGoogle Scholar
  152. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64-99). New York, NY: Appleton-Century-Crofts.Google Scholar
  153. Rheingold, H. L., Gewirtz, J. L., & Ross, H. W. (1959). Social conditioning of vocalizations in the infant. Journal of Comparative & Physiological Psychology, 52(1), 68-73.  https://doi.org/10.1037/h0040067.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Ricci, J. A. (1973). Key pecking under response-independent food presentation after long simple and compound stimuli. Journal of the Experimental Analysis of Behavior, 19(3), 509-516.  https://doi.org/10.1901/jeab.1973.19-509.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Roane, H. S., Vollmer, T. R., Ringdahl, J. E., & Marcus, B. A. (1998). Evaluation of a brief stimulus preference assessment. Journal of Applied Behavior Analysis, 31(4), 605-620.  https://doi.org/10.1901/jaba.1998.31-605.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Ross, R. T., &l LoLordo, V. M. (1987). Evaluation of the relation between Pavlovian occasionsetting and instrumental discriminative stimuli: A blocking analysis. Journal of Experimental Psychology: Animal Behavior Processes, 13(1), 3-16.  https://doi.org/10.1037/0097-7403.13.1.3.PubMedPubMedCentralGoogle Scholar
  157. Sanabria, F., Sitomer, M. T., & Killeen, P. R. (2006). Negative automaintenance omission training is effective. Journal of the Experimental Analysis of Behavior, 86(1), 1-10.  https://doi.org/10.1901/jeab.2006.36-05.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Schindler, C. W., Thorndike, E. B., & Goldberg, S. R. (2000). Conditioned suppression with cocaine as the unconditioned stimulus. Pharmacology, Biochemistry, & Behavior, 65(1), 83–89.  https://doi.org/10.1016/S0091-3057(99)00176-8.CrossRefGoogle Scholar
  159. Schwartz, B. (1973). Maintenance of key pecking by response-independent food presentation: The role of the modality of the signal for food. Journal of the Experimental Analysis of Behavior, 20(1), 17-22.  https://doi.org/10.1901/jeab.1973.20-17.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Schwartz, B., & Gamzu, E. (1977). Pavlovian control of operant behavior: An analysis of autoshaping and its implications for operant conditioning. In W. K. Honig & J. E. R. Staddon (Eds.), Handbook of Operant Behavior (pp. 53-97).  https://doi.org/10.1901/jeab.1973.20-17 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sharp, P. E., James, J. H., & Wagner, A. R. (1980). Habituation of a “blocked” stimulus during Pavlovian conditioning. Bulletin of the Psychonomic Society, 15, 139-142.  https://doi.org/10.3758/BF03334490.CrossRefGoogle Scholar
  162. Shillingsburg, M. A., Hollander, D. L., Yosick, R. N., Bowen, C., & Muskat, L. R. (2015). Stimulus- Stimulus Pairing to increase vocalizations in children with language delays: A review. Analysis of Verbal Behavior, 31(2), 215-235.  https://doi.org/10.1007/s40616-015-0042-2.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sidman, M., & Fletcher, F. G. (1968). A demonstration of auto-shaping with monkeys. Journal of the Experimental Analysis of Behavior, 11(3), 307-309.  https://doi.org/10.1901/jeab.1968.11-307.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Siegel, R. K. (1977). Stimulus selection and tracking during urination: Autoshaping directed behavior with toilet targets. Journal of Applied Behavior Analysis, 10(2), 255-265.  https://doi.org/10.1901/jaba.1977.10-255.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Silva, F. J., Silva, K. M., & Pear, J. J. (1992). Sign- versus goal-tracking: Effects of conditionedstimulus- to-unconditioned stimulus. Journal of the Experimental Analysis of Behavior, 57(1), 17-31.  https://doi.org/10.1901/jeab.1992.57-17.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Silva, K. M., & Timberlake, W. (1998). A behavior systems view of responding to probe stimuli during an interfood clock. Animal Learning & Behavior, 26(3), 313–325.  https://doi.org/10.3758/BF03199224.CrossRefGoogle Scholar
  167. Skinner, B. F. (1935). Two types of conditioned reflex and a pseudo-type. The Journal of General Psychology, 12(1), 66-77.  https://doi.org/10.1080/00221309.1935.9920088.CrossRefGoogle Scholar
  168. Skinner, B. F. (1937). Two types of conditioned reflex and a pseudo-type: A reply to Konorski and Miller. Journal of General Psychology, 16(1), 272-279.  https://doi.org/10.1080/00221309.1937.9917951.CrossRefGoogle Scholar
  169. Skinner, B. F. (1957). Verbal behavior. New York, NY: Appleton-Century-Crofts.CrossRefGoogle Scholar
  170. Skinner, B. F. (1971). Autoshaping. Science, 173(3998), 752-753. Retrieved from https://www.jstor.org/stable/1732431 CrossRefGoogle Scholar
  171. Smith, M. C., Coleman, S. R., & Gormezano, I. (1969). Classical conditioning of the rabbit’s nictitating membrane response at backward, simultaneous, and forward CS-US intervals. Journal of Comparative & Physiological Psychology, 69(2), 226-231.  https://doi.org/10.1037/h0028212.PubMedCrossRefPubMedCentralGoogle Scholar
  172. Smith, R., Michael, J., & Sundberg, M. L. (1996). Automatic reinforcement and automatic punishment in infant vocal behavior. Analysis of Verbal Behavior, 13, 39–48.  https://doi.org/10.1007/BF03392905 PubMedPubMedCentralCrossRefGoogle Scholar
  173. Smith, S. G., & Smith Jr., W. M. (1971). A demonstration of autoshaping with dogs. The Psychological Record, 21, 377–379.  https://doi.org/10.1007/BF03394028 CrossRefGoogle Scholar
  174. Sperling, S. E., & Perkins, M. E. (1979). Autoshaping with common and distinctive stimulus elements, compact and dispersed arrays. Journal of the Experimental Analysis of Behavior, 31(3), 383-394.  https://doi.org/10.1901/jeab.1979.31-383.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Squier, L. H. (1969). Auto-shaping key responses in fish. Psychonomic Science, 17(3), 177–178.  https://doi.org/10.3758/BF03336507.CrossRefGoogle Scholar
  176. Stewart, P. H. (1992). Equine Operant Conditioning: Autoshaping, Observational Learning, and Discriminative Stimulus Intensity (Unpublished master’s thesis). Digital Commons at Utah State University: Logan, UT.. Retrieved from https://digitalcommons.usu.edu/etd/3839
  177. Stock, R. A., Schulze, K. A., & Mirenda, P. (2008). A comparison of stimulus-stimulus pairing, standard echoic training, and control procedures on the vocal behavior of children with autism. Analysis of Verbal Behavior.  https://doi.org/10.1007/BF03393061.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Sundberg, M. L. (2008). VB-MAPP: Verbal behavior milestones assessment and placement program. Concord, CA: AVB Press.Google Scholar
  179. Sundberg, M. L., Loeb, M., Hail, L., & Eigenheer, P. (2002). Contriving establishing operations to teach mands for information. Analysis of Verbal Behavior, 18, 14-28. https://doi.org/10.1007%2Fbf03392968CrossRefGoogle Scholar
  180. Sundberg, M. L. & Michael, J. (2001). The benefits of Skinner’s analysis of verbal behavior for children with autism. Behavior Modification, 25(5), 698-724.  https://doi.org/10.1177/0145445501255003.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Sundberg, M. L., Michael, J., Partington, J. W., & Sundberg, C. A. (1996). The role of automatic reinforcement in early language acquisition. Analysis of Verbal Behavior, 13, 21–37.  https://doi.org/10.1007/bf03392904 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Sundberg, M. L., & Partington, J. W. (1998). Teaching language to children with autism or other developmental disabilities. Pleasant Hill, CA: Behavior Analysts.Google Scholar
  183. Tamis-LeMonda, C. S., Bornstein, M. H., & Baumwell, L. (2001). Maternal responsiveness and children’s achievement of language milestones. Child Development, 72(3), 748–767.  https://doi.org/10.1111/1467-8624.00313 PubMedCrossRefGoogle Scholar
  184. Terrace, H. S., Gibbon, J., Farrell, L., & Baldock, M. D. (1975). Temporal factors influencing the acquisition and maintenance of an autoshaped response. Animal Learning & Behavior, 3(1), 53–62.  https://doi.org/10.3758/BF03209099.CrossRefGoogle Scholar
  185. Timberlake, W., & Grant, D. L. (1975). Auto-shaping in rats to the presentation of another rat predicting food. Science, 190(4215), 690-692.  https://doi.org/10.1126/science.190.4215.690.CrossRefGoogle Scholar
  186. Tomie, A. (1976). Interference with autoshaping by prior context conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 2(4), 323-334.  https://doi.org/10.1037/0097-7403.2.4.323.Google Scholar
  187. Tomie, A., Aguado, A. S., Pohorecky, L. A., & Benjamin, D. (1998). Ethanol induces impulsivelike responding in a delay-of-reward operant choice procedure: Impulsivity predicts autoshaping. Psychopharmacology, 139(4), 376-382.  https://doi.org/10.1007/s002130050728.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Tomie, A., Cunha, C, Mosakowski, E. M., Quanarolo, N. M., & Pohorecky, L. A. (1998). Effects of ethanol on Pavlovian autoshaping in rats. Psychopharmacology, 139(1-2), 154-159.  https://doi.org/10.1007/s002130050700.PubMedCrossRefPubMedCentralGoogle Scholar
  189. Tomie, A., Di Poce, J., DeRenzo, C, & Pohorecky, L. A. (2002). Autoshaping of ethanol drinking: An animal model of binge drinking. Alcohol & Alcoholism, 37(2), 138-146.  https://doi.org/10.1093/alcalc/37.2.138.PubMedCrossRefPubMedCentralGoogle Scholar
  190. Tomie, A., Festa, E. D., Sparta, D. R., & Pohorecky, L. A. (2003). Lever conditioned stimulusdirected autoshaping induced by saccharin-ethanol unconditioned stimulus solution: Effects of ethanol concentration and trial spacing. Alcohol, 30(1), 35-44.  https://doi.org/10.1016/S0741-8329(03)00069-7.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Tomie, A., Mohamed, W. M., & Pohorecky, L. A. (2005). Effects of age on Pavlovian autoshaping of ethanol drinking in non-deprived rats. International Journal of Comparative Psychology, 18, (2),167–177.Google Scholar
  192. Tomie, A., Sparta, D. R., Silberman, Y., Interlandi, J., Mynko, A., Patterson-Buckendahl P., & Pohorecky, L. A. (2002). Pairings of ethanol sipper with food induces Pavlovian autoshaping of ethanol drinking in rats: Evidence of long-term effects of sipper duration. Alcohol and Alcoholism, 37, 547-554.  https://doi.org/10.1093/alcalc/37.6.547.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Tomie, A., Wong, K., Apor K., Patterson-Buckendahl, P., & Pohorecky, L. A. (2003). Autoshaping of ethanol drinking in rats: Effects of ethanol concentration and trial spacing. Alcohol, 31, 125-135.  https://doi.org/10.1016/j.alcohol.2003.08.003.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Tomie, A., Wong, K., & Pohorecky, L. A. (2005). Autoshaping of chlordiazepoxide drinking in non-deprived rats. Behavioural Brain Research, 157, (2),273–281.Google Scholar
  195. Versaggi, C. L., King, C. P., & Meyer, P. J. (2016). The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol. Psychopharmacology, 233(15-16), 2985-2997.  https://doi.org/10.1007/s00213-016-4341-7.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Villaruel, F. R., & Chaudhri, N. (2016). Individual differences in the attribution of incentive salience to a Pavlovian alcohol cue. Frontiers in Behavioral Neuroscience, 10, 1-13.  https://doi.org/10.3389/fnbeh.2016.00238.
  197. Ward, S. J., Osnes, P. J., & Partington, J. W. (2007). The effects of a delay of noncontingent reinforcement during a pairing procedure in the development of stimulus control of automatically reinforced vocalizations. The Analysis of Verbal Behavior, 23(1), 103-111.  https://doi.org/10.1007/BF03393050.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Wasserman, E. A. (1973a). The effect of redundant contextual stimuli on autoshaping the pigeon’s keypeck. Animal Learning & Behavior, 1(3), 198-206.  https://doi.org/10.3758/BF03199074.CrossRefGoogle Scholar
  199. Wasserman, E. A. (1973b). Pavlovian conditioning with heat reinforcement produces stimulusdirected pecking in chicks. Science, 181(4102), 875-877.  https://doi.org/10.1126/science.181.4102.875.PubMedCrossRefPubMedCentralGoogle Scholar
  200. Wasserman, E. A., & Anderson, P. A. (1974). Differential autoshaping to common and distinctive elements of positive and negative discriminative stimuli. Journal of the Experimental Analysis of Behavior, 22(3), 491-496.  https://doi.org/10.1901/jeab.1974.22-491.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Wasserman, E. A., Franklin, S. R., & Hearst, E. (1974). Pavlovian appetitive contingencies and approach versus withdrawal to conditioned stimuli in pigeons. Journal of Comparative Psychology, 86(4), 616–627.  https://doi.org/10.1037/h0036171 PubMedCrossRefPubMedCentralGoogle Scholar
  202. Wasserman, E. A., & McCracken, S. B. (1974). The disruption of autoshaped key pecking in the pigeon by food-tray illumination. Journal of the Experimental Analysis of Behavior, 22(1), 39-45.  https://doi.org/10.1901/jeab.1974.22-39.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Waxman, H. M., & McCleave, J. D. (1978). Auto-shaping in the archer fish (Toxotes chatareus). Behavioral Biology, 22(4), 541-544.  https://doi.org/10.1016/S0091-6773(78)92727-X.CrossRefGoogle Scholar
  204. Wessells, M. G. (1974). The effects of reinforcement upon the prepacking behaviors of pigeons in the autoshaping experiment. Journal of the Experimental Analysis of Behavior, 21(1), 125-144.  https://doi.org/10.1901/jeab.1974.21-125.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Wilcove, W. G., & Miller, J. C. (1974). CS-UCS presentations and a lever: Human autoshaping. Journal of Experimental Psychology, 103(5), 868-877.  https://doi.org/10.1037/h0037388.PubMedCrossRefPubMedCentralGoogle Scholar
  206. Williams, B. (1981). Blocking in an autoshaping procedure. Behaviour Analysis Letters, 1, 345–351.Google Scholar
  207. Williams, B. (1983). Revising the principle of reinforcement. Behaviorism, 11(1), 63–88.Google Scholar
  208. Woodruff, G., & Starr, M. D. (1978). Autoshaping of initial feeding and drinking reactions in newly hatched chicks. Animal Learning & Behavior, 6(3), 265-272.  https://doi.org/10.3758/BF03209612.CrossRefGoogle Scholar
  209. Woodruff, G., & Williams, D. R. (1976). The associative relation underlying autoshaping in the pigeon. Journal of the Experimental Analysis of Behavior, 26(1), 1-13.  https://doi.org/10.1901/jeab.1976.26-1.PubMedPubMedCentralCrossRefGoogle Scholar
  210. Wyckoff, L. B., Jr. (1952). The role of observing responses in discrimination learning. Part I. Psychological Review, 59(6), 431–442.  https://doi.org/10.1037/h0053932.PubMedCrossRefPubMedCentralGoogle Scholar
  211. Yager, L. M., & Robinson, T. E. (2013). A classically conditioned cocaine cue acquires greater control over motivated behavior in rats prone to attribute incentive salience to a food cue. Psychopharmacology, 226(2), 217-228.  https://doi.org/10.1007/s00213-012-2890-y.PubMedPubMedCentralCrossRefGoogle Scholar
  212. Yager, L. M., & Robinson, T. E. (2015). Individual variation in the motivational properties of a nicotine cue: sign-trackers vs. goal-trackers. Psychopharmacology, 232(17), 3149-3160.  https://doi.org/10.1007/s00213-015-3962-6.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Yoon, S., & Bennett, G. M. (2000). Effects of a stimulus-stimulus pairing procedure on conditioning vocal sounds as reinforcers. Analysis of Verbal Behavior, 17, 75-88. https://doi.org/10.1007%2Fbf03392957PubMedPubMedCentralCrossRefGoogle Scholar
  214. Yoon, S., & Feliciano, G. M. (2007). Stimulus-stimulus pairing and subsequent mand acquisition of children with various levels of verbal repertoires. Analysis of Verbal Behavior, 23(1), 3-16. https://doi.org/10.1007%2Fbf03393042PubMedPubMedCentralCrossRefGoogle Scholar
  215. Zeigler, H. P., & Wyckoff Jr., L. B. (1961). Observing responses and discrimination learning. Quarterly Journal of Experimental Psychology, 13(3), 129–140. https://doi.org/10.1007%2Fbf03392246PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Association for Behavior Analysis International 2019

Authors and Affiliations

  1. 1.Columbus State UniversityColumbusUSA
  2. 2.Rollins CollegeWinter ParkUSA

Personalised recommendations