Advertisement

Perspectives on Behavior Science

, Volume 42, Issue 1, pp 109–132 | Cite as

Predict, Control, and Replicate to Understand: How Statistics Can Foster the Fundamental Goals of Science

  • Peter R. KilleenEmail author
Original Research

Abstract

Scientists abstract hypotheses from observations of the world, which they then deploy to test their reliability. The best way to test reliability is to predict an effect before it occurs. If we can manipulate the independent variables (the efficient causes) that make it occur, then ability to predict makes it possible to control. Such control helps to isolate the relevant variables. Control also refers to a comparison condition, conducted to see what would have happened if we had not deployed the key ingredient of the hypothesis: scientific knowledge only accrues when we compare what happens in one condition against what happens in another. When the results of such comparisons are not definitive, metrics of the degree of efficacy of the manipulation are required. Many of those derive from statistical inference, and many of those poorly serve the purpose of the cumulation of knowledge. Without ability to replicate an effect, the utility of the principle used to predict or control is dubious. Traditional models of statistical inference are weak guides to replicability and utility of results. Several alternatives to null hypothesis testing are sketched: Bayesian, model comparison, and predictive inference (prep). Predictive inference shows, for example, that the failure to replicate most results in the Open Science Project was predictable. Replicability is but one aspect of scientific understanding: it establishes the reliability of our data and the predictive ability of our formal models. It is a necessary aspect of scientific progress, even if not by itself sufficient for understanding.

Keywords

Control Predict Replicate Understand NHST Open Science Collaboration Four causes prep 

References

  1. Abikoff, H. (2009). ADHD psychosocial treatments. Journal of Attention Disorders, 13(3), 207–210.  https://doi.org/10.1177/1087054709333385.CrossRefPubMedGoogle Scholar
  2. APS. (2017). Registered replication reports. Retrieved from https://www.psychologicalscience.org/publications/replication.
  3. Ashby, F. G., & O'Brien, J. B. (2008). The p rep statistic as a measure of confidence in model fitting. Psychonomic Bulletin & Review, 15(1), 16–27.  https://doi.org/10.3758/PBR.15.1.16.CrossRefGoogle Scholar
  4. Barlow, D. H., & Hayes, S. C. (1979). Alternating treatments design: one strategy for comparing the effects of two treatments in a single subject. Journal of Applied Behavior Analysis, 12(2), 199–210.  https://doi.org/10.1901/jaba.1979.12-199.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barlow, D. H., Nock, M., & Hersen, M. (2008). Single case research designs: strategies for studying behavior change (3rd ed.). New York, NY: Allyn & Bacon.Google Scholar
  6. Bem, D. J. (2011). Feeling the future: experimental evidence for anomalous retroactive influences on cognition and affect. Journal of Personality & Social Psychology, 100(3), 407–425.  https://doi.org/10.1037/a0021524.CrossRefGoogle Scholar
  7. Berry, K. J., Mielke Jr., P. W., & Johnston, J. E. (2016). Permutation statistical methods: an integrated approach. New York, NY: Springer.CrossRefGoogle Scholar
  8. Bolstad, W. M. (2004). Introduction to Bayesian statistics. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  9. Boomhower, S. R., & Newland, M. C. (2016). Adolescent methylmercury exposure affects choice and delay discounting in mice. Neurotoxicology, 57, 136–144.  https://doi.org/10.1016/j.neuro.2016.09.016.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brackney, R. J., Cheung, T. H., Neisewander, J. L., & Sanabria, F. (2011). The isolation of motivational, motoric, and schedule effects on operant performance: a modeling approach. Journal of the Experimental Analysis of Behavior, 96(1), 17–38.  https://doi.org/10.1901/jeab.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Branch, M. N. (1999). Statistical inference in behavior analysis: some things significance testing does and does not do. The Behavior Analyst, 22(2), 87–92.CrossRefGoogle Scholar
  12. Branch, M. N. (2014). Malignant side effects of null-hypothesis significance testing. Theory & Psychology, 24(2), 256–277.CrossRefGoogle Scholar
  13. Branch, M. N. (2018). The “reproducibility crisis”: might methods used frequently in behavior analysis research help? Perspectives on Behavior Science.  https://doi.org/10.1007/s40614-018-0158-5.
  14. Breland, K., & Breland, M. (1961). The misbehavior of organisms. American Psychologist, 16, 681–684.  https://doi.org/10.1037/h0040090.CrossRefGoogle Scholar
  15. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). New York, NY: Springer.Google Scholar
  16. Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261–304.  https://doi.org/10.1177/0049124104268644.CrossRefGoogle Scholar
  17. Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376.  https://doi.org/10.1038/nrn3475.CrossRefPubMedGoogle Scholar
  18. Cardeña, E. (2018). The experimental evidence for parapsychological phenomena: a review. American Psychologist, 73(5), 663–677.  https://doi.org/10.1037/amp0000236.CrossRefPubMedGoogle Scholar
  19. Chaudhury, D., & Colwell, C. S. (2002). Circadian modulation of learning and memory in fear-conditioned mice. Behavioural Brain Research, 133(1), 95–108.CrossRefGoogle Scholar
  20. Church, R. M. (1979). How to look at data: a review of John W. Tukey’s Exploratory data analysis. Journal of the Experimental Analysis of Behavior, 31(3), 433–440.CrossRefGoogle Scholar
  21. Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49, 997–1003.CrossRefGoogle Scholar
  22. Cumming, G. (2005). Understanding the average probability of replication: comment on Killeen (2005). Psychological Science, 16, 1002–1004.  https://doi.org/10.1111/j.1467-9280.2005.01650.CrossRefPubMedGoogle Scholar
  23. Dallery, J., McDowell, J. J., & Lancaster, J. S. (2000). Falsification of matching theory’s account of single-alternative responding: Herrnstein's k varies with sucrose concentration. Journal of the Experimental Analysis of Behavior, 73, 23–43.CrossRefGoogle Scholar
  24. Davison, M. (2016). Quantitative analysis: a personal historical reminiscence. Retrieved from https://www.researchgate.net/profile/Michael_Davison2/publication/292986440_History/links/56b4614908ae5deb26587dbe.pdf.
  25. DeHart, W. B., & Odum, A. L. (2015). The effects of the framing of time on delay discounting. Journal of the Experimental Analysis of Behavior, 103(1), 10–21.CrossRefGoogle Scholar
  26. Edgington, E., & Onghena, P. (2007). Randomization tests. Boca Raton, FL: Chapman Hall/CRC Press.Google Scholar
  27. Estes, W. K. (1991). Statistical models in behavioral research. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  28. Fisher, R. A. (1959). Statistical methods and scientific inference (2nd ed.). New York, NY: Hafner.Google Scholar
  29. Fitts, D. A. (2010). Improved stopping rules for the design of efficient small-sample experiments in biomedical and biobehavioral research. Behavior Research Methods, 42(1), 3–22.  https://doi.org/10.3758/BRM.42.1.3.CrossRefPubMedGoogle Scholar
  30. Gigerenzer, G. (1993). The superego, the ego, and the id in statistical reasoning. In G. Keren & C. Lewis (Eds.), A handbook for data analysis in the behavioral sciences: methodological issues (pp. 311–339). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  31. Gigerenzer, G. (2004). Mindless statistics. Journal of Socio-Economics, 33, 587–606.CrossRefGoogle Scholar
  32. Gigerenzer, G. (2006). What’s in a sample? A manual for building cognitive theories. In K. Fiedler & P. Juslin (Eds.), Information sampling and adaptive cognition (pp. 239–260). New York, NY: Cambridge University Press.Google Scholar
  33. Gigerenzer, G., & Marewski, J. N. (2015). Surrogate science: the idol of a universal method for scientific inference. Journal of Management, 41(2), 421–440.CrossRefGoogle Scholar
  34. Gilbert, D. T., King, G., Pettigrew, S., & Wilson, T. D. (2016). Comment on “Estimating the reproducibility of psychological science”. Science, 351(6277), 1037–1037.  https://doi.org/10.1126/science.aad7243.CrossRefPubMedGoogle Scholar
  35. Harlow, H. F. (1949). The formation of learning sets. Psychological Review, 56(1), 51–65.CrossRefGoogle Scholar
  36. Harlow, L. L., Mulaik, S. A., & Steiger, J. H. (Eds.). (1997). What if there were no significance tests? Mawah, NJ: Lawrence Erlbaum Associates.Google Scholar
  37. Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. New York, NY: Academic Press.Google Scholar
  38. Herrnstein, R. J. (1970). On the law of effect. Journal of the Experimental Analysis of Behavior, 13, 243–266.  https://doi.org/10.1901/jeab.1970.13-243.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hoffmann, R. (2003). Marginalia: why buy that theory? American Scientist, 91(1), 9–11.CrossRefGoogle Scholar
  40. Hunter, I., & Davison, M. (1982). Independence of response force and reinforcement rate on concurrent variable-interval schedule performance. Journal of the Experimental Analysis of Behavior, 37(2), 183–197.CrossRefGoogle Scholar
  41. Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124.  https://doi.org/10.1371/journal.pmed.0020124.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Irwin, R. J. (2009). Equivalence of the statistics for replicability and area under the ROC curve. British Journal of Mathematical & Statistical Psychology, 62(3), 485–487.  https://doi.org/10.1348/000711008X334760.CrossRefGoogle Scholar
  43. Iverson, G., Wagenmakers, E.-J., & Lee, M. (2010). A model averaging approach to replication: The case of p rep. Psychological Methods, 15(2), 172–181.  https://doi.org/10.1037/a0017182.CrossRefPubMedGoogle Scholar
  44. Iverson, G. J., Lee, M. D., & Wagenmakers, E.-J. (2009). p rep misestimates the probability of replication. Psychonomic Bulletin & Review, 16, 424–429.  https://doi.org/10.3758/PBR.16.2.424.CrossRefGoogle Scholar
  45. Jaynes, E. T., & Bretthorst, G. L. (2003). Probability theory: the logic of science. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  46. Jenkins, H. M., Barrera, F. J., Ireland, C., & Woodside, B. (1978). Signal-centered action patterns of dogs in appetitive classical conditioning. Learning & Motivation, 9(3), 272–296.  https://doi.org/10.1016/0023-9690(78)90010-3.CrossRefGoogle Scholar
  47. Jiroutek, M. R., & Turner, J. R. (2017). Buying a significant result: do we need to reconsider the role of the P value? Journal of Clinical Hypertension, 19(9), 919–921.CrossRefGoogle Scholar
  48. Jones, L. V., & Tukey, J. W. (2000). A sensible formulation of the significance test. Psychological Methods, 5(4), 411–414.CrossRefGoogle Scholar
  49. Julious, S. A. (2005). Sample size of 12 per group rule of thumb for a pilot study. Pharmaceutical Statistics, 4(4), 287–291.CrossRefGoogle Scholar
  50. Killeen, P. R. (1978). Stability criteria. Journal of the Experimental Analysis of Behavior, 29(1), 17–25.CrossRefGoogle Scholar
  51. Killeen, P. R. (2001). The four causes of behavior. Current Directions in Psychological Science, 10(4), 136–140.  https://doi.org/10.1111/1467-8721.00134.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Killeen, P. R. (2005a). Replicability, confidence, and priors. Psychological Science, 16, 1009–1012.  https://doi.org/10.1111/j.1467-9280.2005.01653.x.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Killeen, P. R. (2005b). Tea-tests. General Psychologist, 40(2), 16–19.Google Scholar
  54. Killeen, P. R. (2005c). An alternative to null hypothesis significance tests. Psychological Science, 16, 345–353.  https://doi.org/10.1111/j.0956-7976.2005.01538.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Killeen, P. R. (2006a). Beyond statistical inference: a decision theory for science. Psychonomic Bulletin & Review, 13(4), 549–562.  https://doi.org/10.3758/BF03193962.CrossRefGoogle Scholar
  56. Killeen, P. R. (2006b). The problem with Bayes. Psychological Science, 17, 643–644.CrossRefGoogle Scholar
  57. Killeen, P. R. (2007). Replication statistics. In J. W. Osborne (Ed.), Best practices in quantitative methods (pp. 103–124). Thousand Oaks, CA: Sage.Google Scholar
  58. Killeen, P. R. (2010). P rep replicates: Comment prompted by Iverson, Wagenmakers, and Lee (2010); Lecoutre, Lecoutre, and Poitevineau (2010); and Maraun and Gabriel (2010). Psychological Methods, 15(2), 199–202.CrossRefGoogle Scholar
  59. Killeen, P. R. (2013). The structure of scientific evolution. The Behavior Analyst, 36(2), 325–344.CrossRefGoogle Scholar
  60. Killeen, P. R. (2015). P rep, the probability of replicating an effect. In R. L. Cautin & S. O. Lillenfeld (Eds.), The encyclopedia of clinical psychology (Vol. 4, pp. 2201–2208). Hoboken, NJ: Wiley.Google Scholar
  61. Kline, R. B. (2004). Beyond significance testing: reforming data analysis methods in behavioral research. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  62. Krueger, J. I. (2001). Null hypothesis significance testing. On the survival of a flawed method. American Psychologist, 56(1), 16–26.  https://doi.org/10.1037//0003-066X.56.1.16.CrossRefPubMedGoogle Scholar
  63. Krueger, J. I., & Heck, P. R. (2017). The heuristic value of p in inductive statistical inference. Frontiers in Psychology, 8, 908.  https://doi.org/10.3389/fpsyg.2017.00908.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kyonka, E. G. E. (2018). Tutorial: small-n power analysis. [e-article]. Perspectives on Behavior Science.  https://doi.org/10.1007/s40614-018-0167-4.
  65. Lau, B., & Glimcher, P. W. (2005). Dynamic response-by-response models of matching behavior in rhesus monkeys. Journal of the Experimental Analysis of Behavior, 84(3), 555–579.CrossRefGoogle Scholar
  66. Lecoutre, B., & Killeen, P. R. (2010). Replication is not coincidence: reply to Iverson, Lee, and Wagenmakers (2009). Psychonomic Bulletin & Review, 17(2), 263–269.  https://doi.org/10.3758/PBR.17.2.263.CrossRefGoogle Scholar
  67. Lecoutre, B., Lecoutre, M.-P., & Poitevineau, J. (2010). Killeen’s probability of replication and predictive probabilities: how to compute and use them. Psychological Methods, 15, 158–171.  https://doi.org/10.1037/a0015915.CrossRefPubMedGoogle Scholar
  68. Levy, I. M., Pryor, K. W., & McKeon, T. R. (2016). Is teaching simple surgical skills using an operant learning program more effective than teaching by demonstration? Clinical Orthopaedics & Related Research, 474(4), 945–955.CrossRefGoogle Scholar
  69. Macdonald, R. R. (2005). Why replication probabilities depend on prior probability distributions: a rejoinder to Killeen (2005). Psychological Science, 16, 1007–1008.CrossRefGoogle Scholar
  70. Maraun, M., & Gabriel, S. (2010). Killeen’s p rep coefficient: logical and mathematical problems. Psychological Methods, 15(2), 182–191.  https://doi.org/10.1037/a0016955.CrossRefPubMedGoogle Scholar
  71. Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43(3), 679–690.  https://doi.org/10.3758/s13428-010-0049-5.CrossRefPubMedGoogle Scholar
  72. Maxwell, S. E. (2004). The persistence of underpowered studies in psychological research: causes, consequences, and remedies. Psychological Methods, 9(2), 147–163.  https://doi.org/10.1037/1082-989X.9.2.147.CrossRefPubMedGoogle Scholar
  73. McDowell, J. J. (1986). On the falsifiability of matching theory. Journal of the Experimental Analysis of Behavior, 45(1), 63–74.CrossRefGoogle Scholar
  74. McDowell, J. J., & Dallery, J. (1999). Falsification of matching theory: changes in the asymptote of Herrnstein’s hyperbola as a function of water deprivation. Journal of the Experimental Analysis of Behavior, 72(2), 251–268.CrossRefGoogle Scholar
  75. Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Consulting & Clinical Psychology, (46), 806–834.Google Scholar
  76. Meehl, P. E. (1990). Why summaries of research on psychological theories are often uninterpretable. Psychological Reports, 66, 195–244.CrossRefGoogle Scholar
  77. Mill, J. S. (1904). A system of logic (8th ed.). London: Longmans, Green.Google Scholar
  78. Miller, J. (2009). What is the probability of replicating a statistically significant effect? Psychonomic Bulletin & Review, 16(4), 617–640.  https://doi.org/10.3758/PBR.16.4.617.CrossRefGoogle Scholar
  79. Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47, 90–100.CrossRefGoogle Scholar
  80. Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and continuing controversy. Psychological Methods, 5(2), 241–301.  https://doi.org/10.1037/1082-989X.5.2.241.CrossRefPubMedGoogle Scholar
  81. Nickerson, R. S. (2015). Conditional reasoning: The unruly syntactics, semantics, thematics, and pragmatics of "if.". Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  82. Nuzzo, R. (2014). Scientific method, statistical errors: P values, the “gold standard” of statistical validity, are not as reliable as many scientists assume. Nature News. Retrieved from http://www.nature.com/news/scientific-method-statistical-errors-1.14700 , 506, 150–152.CrossRefGoogle Scholar
  83. Okrent, A. (2013). The Cupertino effect: 11 spell check errors that made it to press. Mental Floss. Retrieved from https://goo.gl/yQobXc.
  84. Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716.  https://doi.org/10.1126/science.aac4716.CrossRefGoogle Scholar
  85. Pant, P. N., & Starbuck, W. H. (1990). Innocents in the forest: forecasting and research methods. Journal of Management, 16(2), 433–460.CrossRefGoogle Scholar
  86. Peirce, C. S. (1955). Abduction and induction: philosophical writings of Peirce (Vol. 11). New York, NY: Dover.Google Scholar
  87. Perone, M. (1999). Statistical inference in behavior analysis: experimental control is better. The Behavior Analyst, 22(2), 109–116.CrossRefGoogle Scholar
  88. Perone, M. (2018). How I learned to stop worrying and love replication failures. Perspectives on Behavior Science.  https://doi.org/10.1007/s40614-018-0153-x.
  89. Perone, M., & Hursh, D. E. (2013). Single-case experimental designs. APA handbook of behavior analysis (vol. 1, pp. 107–126).Google Scholar
  90. Revusky, S. H. (1967). Some statistical treatments compatible with individual organism methodology. Journal of the Experimental Analysis of Behavior, 10(3), 319–330.CrossRefGoogle Scholar
  91. Richard, F. D., Bond Jr., C. F., & Stokes-Zoota, J. J. (2003). One hundred years of social psychology quantitatively described. Review of General Psychology, 7(4), 331–363.  https://doi.org/10.1037/1089-2680.7.4.331.CrossRefGoogle Scholar
  92. Royall, R. (1997). Statistical evidence: a likelihood paradigm. London, UK: Chapman & Hall.Google Scholar
  93. Royall, R. (2004). The likelihood paradigm for statistical evidence. In M. L. Taper & S. R. Lele (Eds.), The nature of scientific evidence: statistical, philosophical, and empirical considerations (pp. 119–152). Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  94. Rubin, M. (2017). When does HARKing hurt? Identifying when different types of undisclosed post hoc hypothesizing harm scientific progress. Review of General Psychology, 21(4), 308–320.  https://doi.org/10.1037/gpr0000128.CrossRefGoogle Scholar
  95. Sanabria, F., & Killeen, P. R. (2007). Better statistics for better decisions: rejecting null hypothesis statistical tests in favor of replication statistics. Psychology in the Schools, 44(5), 471–481.  https://doi.org/10.1002/pits.20239.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. New York, NY: Wadsworth Cengage Learning.Google Scholar
  97. Shadish, W. R., & Haddock, C. K. (1994). Combining estimates of effect size. In H. Cooper & V. L. Hedges (Eds.), The handbook of research synthesis (pp. 261–281). New York, NY: Russell Sage Foundation.Google Scholar
  98. Shadish, W. R., Rindskopf, D. M., & Hedges, L. V. (2008). The state of the science in the meta-analysis of single-case experimental designs. Evidence-Based Communication Assessment & Intervention, 2(3), 188–196.CrossRefGoogle Scholar
  99. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2018). False-positive citations. Perspectives on Psychological Science, 13(2), 255–259.  https://doi.org/10.1177/1745691617698146.CrossRefPubMedGoogle Scholar
  100. Skinner, B. F. (1956). A case history in scientific method. American Psychologist, 11, 221–233.CrossRefGoogle Scholar
  101. Smith, J. D. (2012). Single-case experimental designs: a systematic review of published research and current standards. Psychological Methods, 17(4), 510–560.  https://doi.org/10.1037/a0029312.CrossRefPubMedGoogle Scholar
  102. Trafimow, D. (2003). Hypothesis testing and theory evaluation at the boundaries: surprising insights from Bayes’s theorem. Psychological Review, 110, 526–535.  https://doi.org/10.1037/0033-295X.110.3.526.CrossRefPubMedGoogle Scholar
  103. Trafimow, D., MacDonald, J. A., Rice, S., & Clason, D. L. (2010). How often is prep close to the true replication probability? Psychological Methods, 15(3), 300–307.  https://doi.org/10.1037/a0018533.CrossRefPubMedGoogle Scholar
  104. Tryon, W. W. (1982). A simplified time-series analysis for evaluating treatment interventions. Journal of Applied Behavior Analysis, 15(3), 423–429.CrossRefGoogle Scholar
  105. Unicomb, R., Colyvas, K., Harrison, E., & Hewat, S. (2015). Assessment of reliable change using 95% credible intervals for the differences in proportions: a statistical analysis for case-study methodology. Journal of Speech, Language, & Hearing Research, 58(3), 728–739.CrossRefGoogle Scholar
  106. Urbach, P. (1987). Francis Bacon’s philosophy of science: an account and a reappraisal. LaSalle, IL: Open Court.Google Scholar
  107. Van Dongen, H. P. A., & Dinges, D. F. (2000). Circadian rhythms in fatigue, alertness, and performance. In M. Kryger, T. Roth, & W. Dement (Eds.), Principles and practice of sleep medicine (Vol. 20, 3rd ed., pp. 391–399). Philadelphia, PA: Saunders.Google Scholar
  108. Vandekerckhove, J., Rouder, J. N., & Kruschke, J. K. (2018). Editorial: Bayesian methods for advancing psychological science. Psychonomic Bulletin & Review, 25, 1–4.  https://doi.org/10.3758/s13423-018-1443-8.CrossRefGoogle Scholar
  109. Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804.  https://doi.org/10.3758/BF03194105.CrossRefGoogle Scholar
  110. Wagenmakers, E.-J., & Grünwald, P. (2006). A Bayesian perspective on hypothesis testing: a comment on Killeen (2005). Psychological Science, 17, 641–642.CrossRefGoogle Scholar
  111. Weaver, E. S., & Lloyd, B. P. (2018). Randomization tests for single case designs with rapidly alternating conditions: an analysis of p-values from published experiments. Perspectives on Behavior Science.  https://doi.org/10.1007/s40614-018-0165-6.
  112. Wikipedia. (2017a). Replication crisis. Retrieved August 21, 2017, from https://en.wikipedia.org/w/index.php?title=Replication_crisis&oldid=795876147.
  113. Wikipedia. (2017b). Scientific method. Retrieved July 22, 2018, from https://en.wikipedia.org/w/index.php?title=Scientific_method&oldid=795832022.
  114. Winkler, R. L. (2003). An introduction to Bayesian inference and decision (2nd ed.). Gainseville, FL: Probabilistic Publishing.Google Scholar

Copyright information

© Association for Behavior Analysis International 2018

Authors and Affiliations

  1. 1.Arizona State UniversityPrescottUSA

Personalised recommendations